
- •Глава 6.Канал измерения температуры Содержание
- •1. Общие сведения об измерении температуры
- •1.1. Понятие температуры
- •1.2. Особенности измерения температуры
- •1.3. Авиационные термометры
- •2. Термобиметаллические термометры
- •3. Терморезистивные преобразователи
- •3.1. Принцип действия. Измерительные цепи.
- •3.2. Термопреобразователи сопротивления на основе металлов
- •3.4. Особенности устройства термометров сопротивления
- •3.5. Параметры терморезисторов
- •3.6. Погрешности терморезисторных термометров
- •4. Термоэлектрические термометры.
- •5. Общие методические погрешности датчиков температуры
- •6. Контрольные вопросы:
3.5. Параметры терморезисторов
1. Теплоёмкость терморезистора (С) – количество тепла, которое может аккумулировать терморезистор при изменении его температуры на 1 °С:
,
(25)
где WT – тепло, выделенное в теле терморезистора; Wα – тепло, рассеянное в окружающую среду.
С однозначно определяется температурой терморезистора и численно равна энергии, которую необходимо сообщить терморезистору, чтобы изменить его температуру на 1°С.
2. Динамический коэффициент рассеяния мощности кД:
(26)
где
;kД
- определяется температурой терморезистора
Т,
температурой окружающей среды θ и
зависит от термодинамических свойств
последней, площади и природы поверхности
терморезистора.
3. Тепловая постоянная времени τ:
(27)
4. Электрическая постоянная времени терморезистора τe характеризует скорость изменения тока и напряжения в процессе их установления. Электрическая постоянная времени τe связана с тепловой постоянной времени τ и динамическим множителем D соотношением:
(28)
5. Динамический множитель:
или
(29)
3.6. Погрешности терморезисторных термометров
Основными погрешностями приборов прямого преобразования являются:
- методические погрешности из-за нагрева током теплочувствительного элемента;
- инструментальные температурные погрешности, вызванные различным нагревом элементов прибора при изменении температуры окружающей среды;
- погрешности от влияния внешних электрических и магнитных полей;
- погрешности трения, шкаловые погрешности.
Погрешность от нагрева теплочувствительного элемента током может быть доведена до допустимых пределов путём выбора Rθ из условия Rθ<<R1. (R1 – сопротивление ветви моста). Кроме того, чем интенсивнее теплообмен между теплочувствительным элементом и средой, тем эта погрешность меньше.
В приборах с логометрическим указателем показания не зависят от колебания напряжения питания моста. Инструментальные температурные погрешности возникают из-за изменения сопротивлений рамок при колебаниях температуры окружающей среды.
В приборе уравновешивающего преобразования имеют значение погрешности от нагрева теплочувствительного элемента током и от непостоянства передаточного коэффициента от двигателя до токосъёмника потенциометра.
Эти погрешности достаточно малы.
4. Термоэлектрические термометры.
Термоэлектрические термометры в авиации используются в основном для измерения температуры отдельных частей силовых установок и газовых потоков, выходящих из реактивного сопла двигателя.
Принцип действия термоэлектрического термометра основан на использовании термоэлектрического эффекта.
Явление термоэлектричества заключается в возникновении термоэлектродвижущей силы (термоЭДС) в спае двух проводников из двух разнородных токопроводящих материалов при наличии разности температур места соединения проводников и их свободных концов. Такая цепь, составленная из двух разнородных металлов, называется термопарой. Проводники, из которых состоит термопара, называются тероэлектродами. Одну точку соединения термоэлектродов называют рабочим концом (горячим спаем), а другую—свободным концом (холодным спаем). Физическая сущность явления объясняется следующим. Атомы металлов составляют пространственную решетку, внутри которой свободные электроны, участвующие в тепловом движении, образуют электронный газ. Плотность электронного газа для разных металлов неодинакова. Из-за этого на границе соприкосновения двух разнородных металлов возникает стремление к выравниванию плотности электронного газа. Часть электронов переходит из одного металла в другой. При этом один металл заряжается положительно, другой отрицательно. Возникает контактная разность потенциалов, которая уравновешивает разность давления электронного газа. Контактная разность потенциалов не зависит от формы и геометрических размеров термоэлектродов и определяется разностью температур горячего и холодного спаев и свойствами металлических проводников термопары.
Если спаять между собой концы двух разнородных проводников А и В (рис. 15. а), то при одинаковой температуре обоих спаев тока в цепи не будет. В обоих спаях возникает одинаковая по величин, но обратная по знаку контактная разность потенциалов, причем суммарная термоЭДС в замкнутой цепи равна нулю. При нагреве одного из спаев до температуры tГС электроны на горячем конце приобретут более высокие энергии и скорости, чем на холодном. Возникающие в результате этого потоки электронов и связанные с ними накопления зарядов приводят к тому, что контактная разность потенциалов в нагретом спае, увеличивается, а в холодном остается прежней. В результат возникает термоЭДС, зависящая от разности температур tГС – tХС. В цепи потечет ток. Направление тока зависит только от материала термоэлектродов. Условились называть положительным тот электрод, по направлению к которому течет ток через горячий спай (положительный - А).
Для большинства термопар контактные ЭДС возникают при любых температурах и являются их линейными функциями, так что можно принять
(30)
где к - коэффициент пропорциональности, зависящий от свойств материалов термопары.
Однако для некоторых термопар контактные ЭДС являются нелинейными функциями температуры. В частности, величина ЭДС может быть приближенно выражена квадратичной функцией температуры горячего спая при температуре холодного спая, равной нулю (tХС = 0):
(31)
где tГС - температура горячего спая;
а и b - постоянные коэффициенты, характеризующие свойства металлов термопары. Для электродов применяются материалы обеспечивающие наибольшее значение ТЭДС.
РИС.15. Термопары
а - возникновение термоЭДС; б - ведение термоэлектродных проводов; в - градуировочные характеристики.
Таким образом, измеряя термоЭДС, развиваемую термопарой, можно определить температуру горячего спая. В этом и состоит принцип действия термоэлектрических термометров.
Электродвижущую силу, развиваемую термопарой, можно измерить с помощью гальванометра или компенсационным методом.
Метод измерения с помощью гальванометра основан на измерении силы тока, протекающего в замкнутой цепи, составленной из последовательно соединенных термопары и чувствительного гальванометра (рис.15., б). Измерение ЭДС сводится к измерению силы тока, пропорциональный величине измеряемой ЭДС.
Для измерения термоЭДС в термоэлектрических термометрах применяют магнитоэлектрической гальванометр, высокая чувствительность которого обеспечивает такие измерения. Прибор работает, как милливольтметр, а шкала его отградуирована в градусах Цельсия.
Показания измерителя будут соответствовать температуре, измеряемой среды только в случаев обеспечения условия постоянства температуры свободных концов термопары или учета изменения этой температуры, для чего свободные концы термопары с помощью соединительных проводов С и D вынесены в зону небольших колебаний температуры (на приборную доску). Практически температура среды, окружающей свободные концы, термопары, изменяется в пределах от +50 до - 60° С.
Материалами для изготовления термопар служат благородные и неблагородные металлы, сплавы и полупроводники. Термопары из благородных металлов применяются для измерения высоких температур и при особо точных измерениях. Для технических измерений используются термопары из неблагородных металлов, сплавов и полупроводников. Такие термопары имеют более значительные по величине ТЭДС, чем термопары из благородных металлов, и их изготовление дешевле. В технике применяют также для изготовления термопар металлические электроды в паре с неметаллами.
Каждая термопара, состоящая из двух термоэлектродов, характеризуется зависимостью изменения термоЭДС от температуры, называемой градуировкой. На термопарах и шкале показывающего прибора, изготовленных для одной градуировки, ставится знак «Гр» с обозначением градуировки. Например, «Гр ХА» - градуировка термоэлектродов хромель-алюмель. Наиболее широкое применение в авиационных термометрах получили термопары: хромель-копелевая (хромель - сплав из 89 % Ni, 9.8 % Cr, 1 % Fe, 0.2 % Мn; копель - сплав из 45% Ni, 55% Сu); хромель-алюмелевая (алюмель - сплав из 94 % Ni, 0.5 % Fe, 2% AI, 2.5 % Mn и 1% Si), железокопелевая, медькопелевая, медьконстантановая и др. Принято в обозначениях градуировок термоэлектрических преобразователей первым указывать положительный термоэлектрод, вторым - отрицательный.
Зависимось термоЭДC пpeoбpaзoзaтeля от разности температур его горячего и холодного спаев устанавливают экспериментальным путем и представляют в виде таблиц или графиков, которые называются градуировочными.
В справочных таблицах обычно приводят значения термоЭДС для термоэлектродов из различных материалов и сплавов, соединенных с нормальным платиновым термоэлектродом, причем температура холодного спая принимается равной 0°С. На рис.15., в показаны градуировочные характеристики некоторых термопар.
Как видно из формулы (30), непостоянство температуры холодного спая является причиной одной из методических погрешностей термоэлектрических термометров. Для ее уменьшения применяют либо различные способы компенсации, либо такие термопары, которые не требуют компенсации этой погрешности. Значительное распространение в авиационных термометрах получила термопара из никель-кобальтового сплава (НК) и специального алюмеля. ТермоЭДС, развиваемая термопарой НК-СА, появляется только тогда, когда разность температур составляет 240° С, при этом колебания температуры холодного спая в пределах от -60 до +50° С практически не влияют на показания прибора. Характеристика такой термопары приведена на рис. 15, в.
Для получения большей величины термоэлектродвижущей силы необходимо увеличивать разность температур горячего и холодного спаев, т. е. отводить холодный спай дальше от горячего. В то же время увеличение длины и соответственно сопротивления соединительных проводов уменьшает величину тока гальванометра, измеряющего термоЭДС. Изменение сопротивления соединительных проводов вследствие колебаний температуры наружного воздуха приводит к возникновению погрешности комплекта. Поэтому выбор материала и длины проводов, соединяющих термопару с указателем, в термоэлектрических термометрах имеет очень важное значение.
Материал этих соединительных проводов может быть таким же, как и материал электродов термопары. В таком случае холодным спаем служит место подключения соединительных проводов к указателю. Однако в случае применения термопар из благородных металлов (например, из платины и ее сплавов) термоэлектродные соединительные провода выполняются из дешевых металлов, термоэлектрически идентичных термоэлектродам. Под термином «термоэлектрическая идентичность» понимается отсутствие термоЭДС в паре, составленной из соединительного провода и присоединенного термоэлектрода. Холодные спаи термоэлектродов могут выводиться и в соединительную коробку, устанавливаемую в месте, исключающем повышение ее температуры.
Во всех случаях для каждой термопары из определенных термоэлектродов необходимо применять свои термоэлектродные провода, величина электрического сопротивления которых должна быть строго определенной и не должна, зависеть от окружающей температуры. Значение сопротивления соединительных проводов, входящих в комплект термоэлектрического термометра взаимозаменяемой частью, указывается при градуировке прибора. Длину соединительных проводов изменять нельзя.
Для обеспечения взаимозаменяемости и удобства монтажа на летательном аппарате термоэлектроды А и В и соединительные провода C и D (рис.15., б), входящие в комплект термометра, изготовляются отдельно. При этом термоэлектроды выполняются короткими, а длина соединительных проводов зависит от расстояния до гальванометра.
Если холодный спай вынесен к гальванометру, то при неодинаковой температуре в точках a и b присоединения к прибору могут возникнуть паразитные термоЭДС, которые являются причиной возникновения еще одной методической погрешности термоэлектрических термометров. Чтобы уменьшить эту погрешность, точки должны быть расположены как можно ближе одна к другой.
Термоэлектрические термометры предназначены для измерения высоких температур. Термопары этих приборов защищены оболочками, обладающими жаростойкостью, газонепроницаемостью, способностью выдерживать резкие изменения температуры, хорошей теплопроводностью и механической прочностью.
По своему назначению авиационные термоэлектрические термометры можно разделить на три группы.
К первой группе относятся термометры типа ТВГ, ИТГ и ТСТ, служащие для измерения температуры выходящих газов турбореактивных, турбовинтовых авиационных двигателей и турбостартеров.
Ко второй группе относятся термометры типа ТЦТ, измеряющие температуру головок цилиндров поршневых двигателей и других твердых тел.
В третью группу объединяются измерительные системы типа ИТ, ИА, предназначенные для измерения температуры газов, выходящих из реактивного сопла двигателе и турбин низкого и высокого давления.
В качестве термопреобразователей в термоэлектрических термометрах используются различные термопары.
В термометрах ТВГ, ИТГ, ТСТ используются термопары типа Т-1, Т-9, Т-11, Т-80, Т-82К, Т-99 различных градуировок.
В измерительных системах применяются термопары типа Т-99, Т-38, Т-93.
Термопары помещают в жаропрочный корпус с камерой торможения, аналогичной показанной на рис. 17. и равномерно размещают по периметру одного сечения выходного сопла двигателя.
В термометрах ТЦТ горячий спай термоэлектрического преобразователя Т-3 градуировки ХК прикрепляется к медному кольцу, которое устанавливается под зажигательную свечу поршневого авиадвигателя.
Способы соединения термопар различны. В термометрах типа ТВГ, ТСТ термопары соединяются электрически в одну термобатарею последовательно. В измерительных системах тепмопреобразователи имеют две комбинации параллельно или параллельно - последовательно соединенных термоэлектродов, при этом одна группа термопреобразователей используется непосредственно для измерения температуры, а другая - в качестве датчика регулятора температуры. Указанные способы соединения позволяют получить суммарную термоЭДС, пропорциональную среднему значению температуры выходящих газов. Соединение термопреобразователей осуществляется в соединительных коробках, расположенных в таком месте самолета, где температура окружающей среды меняется незначительно и не превышает 100° С.
Электрические схемы термометров ТЦТ, ТВГ, ИТГ, ТСТ одинаковы, отличия заключаются только в способах соединения термопар.
Устройство термоэлектрического термометра и работу его электрической схемы рассмотрим на примере термометра ИТГ-1.
Основными элементами электрической схемы являются термопреобразователь, соединительные провода и измерительный прибор (рис.16.). Термопреобразователь ТП1 представляет собой блок параллельно соединенных термопар. ТермоЭДС преобразователя измеряется магнитоэлектрическим милливольтметром.
Зависимость угла a поворота стрелки показывающего прибора от разности температур горячего и холодного спаев рассчитывается по формуле
(31)
где: к - постоянная гальванометра;
В - магнитная индукция;
с - жесткость противодействующей пружины;
Rt, RСП - соответственно сопротивления термопары и соединительных проводов;
R1 - подгоночное сопротивление соединительных проводов;
Рис. 16. Принципиальная электрическая схема ИТГ-1.
R2 - добавочное сопротивление измерителя, обеспечивающее постоянство внутреннего сопротивления милливольтметра;
R3 - сопротивление рамки;
R4 - термокомпенсационное сопротивление, предназначенное для уменьшения погрешности прибора из-за изменения сопротивления рамки указателя;
Rпp и Rб - соответственно электрические сопротивления противодействующих пружин и биметаллического корректора.
Комплект термометра ИТГ-1 состоит из измерителя ИТГ и термопар Т-99. Вместе с измерителем ИТГ могут работать термопары Т-38-3. Особенностью термометра является применение сдвоенных термопар, соединенных параллельно и образующих две самостоятельные цепи по 12 термопар Т-99 или по 7 термопар Т-38 в каждой цепи. Одна цепь подключается к указателю термометра, другая
- к регулятору температуры
Рис.17
.
Термопара Т – 99: 1 – корпус; 2,3 –
контактные винты; 4 – термоэлектроды;
5 – входные отверстия; 6 – камера
торможения; 7 - выходное отверстие; 8 –
термоэлектродный спай; 9 – штуцер.
Сдвоенная термопара Т-99 имеет неразъемную конструкцию
(рис. 17.) и состоит из корпуса 1, термоэлектродов 4, выполненных из сплавов хромеля (положительные) и алюмеля (отрицательные), и штуцера 9. В корпусе термопары, изготовленном из жаропрочного сплава, размещены два независимо работающих термоэлектродных спая 8, находящихся непосредственно в газовом потоке. Камера торможения 6 имеет два входных отверстия 5 диаметром 3 мм и одно выходное отверстие 7 диаметром 4 мм, что позволяет получить осредненную температуру по высоте термопары. Штуцер 9 запрессован и припаян к корпусу 7 термопары. Термоэлектроды 4 приварены к контактным винтам 2 и 3. Термопары соединены в термобатарею из 12 параллельно включенных термопар и подключаются к указателю соединительными проводами из термоэлектродного материала (хромеля и алюмеля). Для подгонки сопротивления внешней цепи термометра (включая термопары) до величины (7.5+0.1) Ом при температуре +20 °С в штепсельный разъем, подходящий к указателю, впаяно дополнительное сопротивление. Головка термопары выдерживает рабочую температуру до +200°С, предельную - до +250°С.
Указатель ИТГ-1 представляет собой магнитоэлектрический милливольтметр, магнитная система которого состоит из постоянного магнита, магнитопровода и сердечника. К магниту со стороны сердечника прикреплен полюсный наконечник в виде пластины из мягкого железа. Рамка перемещается в зазоре между полюсной пластиной и сердечником магнитопровода. В подвижную систему прибора вместе с рамкой входят противодействующая пружина, которая одновременно служит токопроводом. На оси подвижной системы закреплена стрелка указателя.
В конструкции прибора предусмотрен биметаллический корректор, который служит для компенсации погрешности термометра, возникающей из-за изменения температуры холодного спая. При изменении температуры биметаллическая спираль поворачивает подвижную систему и стрелку прибора на дополнительный угол. Для регулировки биметаллического компенсатора служит винт.
Измеритель ИТГ-1 имеет шкалу с углом размаха 230°, диапазоном измерения от 200 до 1100°С, оцифорованную на точках 2, 4, 8, 10, соответствующих сотням градусов Цельсия (´100°С).
Нулевое положение стрелки обозначено точкой. Цена деления от 200 до 300°С и от 1000 до 1100°С – через 50°С. Цена деления на остальном участка шкалы – через 20°С. На шкале указаны шифр прибора “ИТГ-1”, градуировка “Гр. ХА”, градуировочная величина сопротивления внешней цепи “ RВН – 7.5W ” и номер измерителя. Погрешность показаний комплекта при температуре наружного воздуха (20±5)°С составляет ±12°С в диапазоне от 450 до 750 °С; ±15° в диапазоне от 750 до 1000° С; ±30° в диапазоне от 1000 до 1100°С.
Сдвоенная измерительная аппаратура 2ИА-7 предназначена для измерения температуры газа авиационных двигателей в условиях полета и на земле.
Рабочий диапазон измерения температуры – от 300 до1000°С.
Погрешность показаний аппаратуры при температуре внешней среды (+25±10)°С составляет ±6°С в рабочем диапазоне температур и ±7°С в остальных диапазонах (0 - 300°С, 100 – 1200°С). Электропитание: ~115В ± 5% с частотой 400Гц +7%; = 27В ± 10%.
В комплект аппаратуры входят два указателя температуры УТ – 7А, сдвоенный усилитель 2УЭ-6В и две переходные колодки ПК – 9Б.
Термопреобразователем служит коллектор термопар, состоящий из 12 параллельно соединенных хромель-алюмелевых термопар типа Т-99-3, Т-93-2, Е-38-3, Т-82Г.
Радиальное расположение термопар по периметру авиадвигателя обеспечивает измерение среднемассового значения температуры выходящих газов.
Принцип действия аппаратуры основан на компенсационном методе измерения термоЭДС. Функциональная схема одного канала системы 2ИА-7 приведена на рис.18.
Рис.18. Измерительная аппаратура 2ИА – 7.
Встречно с термоЭДС термопар включено компенсирующее напряжение, снимаемое с мостовой схемы, собранной на резисторах R9, R10, R11 и размещенной в указателе У-7А.
Мостовая схема запитывается постоянным током через стабилизатор напряжения. Величина компенсирующего напряжения моста зависит от положения напряжения токосъемника потенциометра обратной связи R9. Разность ТЭДС и компенсирующего напряжения преобразуется с помощью входного модулятора, собранного на интегральных прерывателях ПП1 и ПП2 и входном трансформаторе ТР2, в переменное напряжение частотой 400Гц. Опорное (коммутационное) напряжение подается на модулятор через трансформатор ТР1. Таким образом, со вторичной обмотки трансформатора ТР2 будет сниматься сигнал рассогласования в виде напряжения переменного тока, которое усиливается в усилителе напряжения и усилителе мощности и подается на реверсивный двигатель отработки, перемещающий токосъемник потенциометра обратной связи до тех пор, пока компенсирующее напряжение не сравняется с измеряемой термоЭДС и их разность не станет равной нулю. Таким образом, каждому положению токосъемника потенциометра обратной связи соответствует определенное значение термоЭДС, т. е. определенная измеряемая температура.
Двигатель через редукторы перемещает стрелки указателей грубого и точного отсчета. В указателе имеется узел сигнализации, обеспечивающий подачу сигнала при определенных показаниях прибора (рабочей или критической температуре).
В аппаратуре предусмотрена автоматическая компенсация термоЭДС холодного спая термопары напряжением мостовой схемы переходной колодки, меняющимся в зависимости от температуры холодного спая термопары. Компенсирующее напряжение мостовой схемы, одним плечом которой является термочувствительное сопротивление R8, включено встречно с термоЭДС холодного спая термопары. Мостовая схема запитывается от стабилизатора напряжения СН.
В состоянии равновесия термоЭДС холодного спая уравновешена напряжением диагонали мостовой схемы, и в измерительную цепь подается сигнал от термопары, соответствующей температуре горячего спая.
При изменении температуры окружающей среды меняется ТЭДС холодного спая термопары, но одновременно меняется и напряжение диагонали мостовой схемы за счет изменения никелевого резистора R8, имеющего температуру холодного спая термопары. Это изменение напряжения диагонали мостовой схемы полностью компенсирует изменение термоЭДС холодного спая термопары.
В аппаратуре 2ИА-7 предусмотрен встроенный контроль работоспособности. При нажатии кнопки КН1 шунтируются напряжения, поступающие с коллектора термопар и мостовой схемы колодки ПК-9Б. При этом стрелки указателя должны находится в диапазоне шкалы 0 - 150° С.
Помимо измерительной аппаратуры 2ИА-7А на самолетах устанавливаются измерительные системы 2ИА-6, ИА-11А, ИА-12А и измерители температуры ИТ-2Т. в этих термометрах термоЭДС одного или группы термопреобразователей сравниваются с напряжением постоянного тока на выходе источника регулируемого напряжения. Схема сравнения служит для получения компенсирующего, которое благодаря наличию следящей системы стремится быть равным или противоположным по знаку термоЭДС термопары.
Конструктивной особенностью измерительной аппаратуры ИА-11А, ИА-12А является применение в ней ленточных показывающих приборов типа ИТГП.
Авиационным термометрам свойственны погрешности: температурные методические, температурные инструментальные и динамические.
Температурные методические погрешности термометров возникают прежде всего из-за того, что температура термопреобразователя не совпадает с температурой контролируемой среды. Совпадение этих температур и, следовательно, уменьшение методической погрешности зависит от размеров, формы, материалов термопреобразователя, от условий и способа передачи тепла, от степени заторможенности газового потока.
Характер теплообмена между средой и ЧЭ влияет на динамическую погрешность, т. е. на запаздывание показаний термометра. Эта погрешность характеризуется постоянной времени t термометра и зависит от свойств прибора и скорости изменения измеряемой температуры. Для уменьшения ее в приемниках П-77 устанавливают бронзовые посеребренные пластины, в термометрах ТЦТ термопару крепят к медному кольцу, а в термопарах термоэлектрических приборов, измеряющих температуру выходящих газов, уменьшают объем камеры торможения. Применяемые меры достаточно эффективны, но позволяют снизить постоянную времени лишь до определенной величины. Например, t для преобразователей П-1 равна 3 с, для П-5 – от 2 до 3 с, для термопреобразователей ТВГ - примерно 2.5 с.
В термометрах сопротивления температурная методическая погрешность обусловлена дополнительным изменением сопротивления теплочувствительного элемента вследствие нагрева его током измерительной системы.
Изменения напряжения питания также приводят к возникновению дополнительной погрешности. Для схем с магнитоэлектрическим логометром такие погрешности существенны при колебаниях напряжения больше ±10%.
В термоэлектрических термометрах температурные методические погрешности возникают из-за изменения температуры холодного спая, возникновения паразитных термоЭДС, изменения сопротивления измерительной цепи, неполного торможения газового потока.
Для уменьшения влияния температуры холодного спая в термометрах ИТГ, ТЦТ применяют биметаллические корректоры, в термометрах ТВГ - термопары градуировок НК-СА и НК-СК, генерирующие термоЭДС при температуре горячего спая более 100 - 300° С, в измерительной аппаратуре ИА устанавливают схемы компенсации.
Инструментальные погрешности в термометрах сопротивлеия и в термоэлектрических термометрах серии ИТГ, ТВГ и ТЦТ возникают из-за изменения сопротивления рамок измерительных механизмов показывающих приборов, а также из-за влияния внешних электрических и магнитных полей, трения и т. д.
Температурные инструментальные погрешности уменьшают путем включения термочувствительных резисторов с положительным термокоэффициентом сопротивления (ТКС) в термометрах ТУЭ и ТНВ и с отрицательным ТКС в термометрах с полупроводниковым термопреобразователем, а также в термометрах ТЦТ, ТВГ, ИТГ. Для уменьшения погрешностей от влияния внешних полей в указателях термометров сопротивления применяют экран из пермаллоя.
Термометры сопротивления и термоэлектрические термометры имеют свои особенности эксплуатации.
В процессе технического обслуживания термометров сопротивления необходимо соблюдать взаимозаменяемость приемников температуры в соответствии с их техническими xapaктepиcтиками.
При замене приемника нельзя изменять условий теплообмена. Необходимо тщательно следить за чистотой поверхности теплоприемников.
Возможные неисправности термометра сопротивления, можно проанализировать, используя электрическую схему комплекта (рис. 17.,а).
Если стрелка указателя отклоняется вправо до упора (“зашкаливает” за максимальный предел измерения), что соответствует значению Rt ® ¥, это может быть cледствием обрыва терморезистора приемника температуры или провода, соединяющего его с прибором. Если указатель “бьет” за левую крайнюю отметку, что соответствует Rt ® 0, это указывает короткое замыкание проводов или термосопротивлении приемника.
К надежности и исправности термоэлектрических термометров предъявляются особо высокие требования, так как контроль теплового режима авиационных двигателей существенным образом влияет на предотвращение пpeждeвpeмeннoгo cнятия иx c эксплуатации и безопасность полетов. Так, при запуске двигателя, а также в полете возможны превышения значений температуры выходящих газов за предельные (критические) Ткр. Чтобы предотвратить последствия заброса температур из-за недостаточноого внимания членов экипажа, применяют кроме автоматов ограничения устройства сигнализации о критических значениях температур. Например, в измерительной аппаратуре 2ИА – 7А в зависимости от того, на каком объекте она устанавливается, предусмотрена сигнализация восьми значений критических температур от 670 до 975° С. Помимо этого, схемой измерения предусматривается встроенный контроль работоспособности, который в некоторых измерительных системах разделяется на контроль при работающем и контроль при неработающем двигателе.
Для термоэлектрических термометров типа ТВГ, ТЦТ, ТСТ характерно, что их работоспособность можно проверить только при работающих двигателях. Если при этом термометр не выдает показаний или показания его занижены причинами неисправностей могут быть:
обрыв в термопаре или соединительных проводах;
неправильное присоединение проводов в клеммной колодке;
нарушение градуировки прибора;
увеличение сопротивления элементов электрической схемы;
износ деталей в подвижной системе магнитоэлектрического указателя.