- •1. Основные понятия и особ-ти эконометрического метода
- •2. Типы экономических данных, используемых в эконометрических исследованиях.
- •3. Специфика экономических данных.
- •4. Классификация эконометрических моделей.
- •5. Основные этапы построения эконометрических моделей.
- •6. Функциональные и стохастические типы связей. Ковариация, корреляция
- •7. Анализ линейной стат-кой связи экономических данных, корреляция, вычисление коэф-в корреляции. Проверка значимости
- •8. Измерение тесноты связи между показателями. Анализ матрицы коэффициентов парной корреляции.
- •9. Регрессионный анализ. Зависимые и независимые переменные
- •10. Предпосылки применения мнк.
- •2. В модели ( ) возмущение (или зависимая переменная ) есть величина случайная, а объясняющая переменная - величина неслучайная.
- •11. Свойства оценок мнк
- •12. Лин модель парной регрессии. Оценка параметров модели с пом мнк.
- •13. Показатели качества регрессии модели парной регрессии.
- •14. Анализ статистической значимости параметров модели парной регрессии.
- •15. Интервальная оценка параметров модели парной регрессии.
- •16. Проверка выполнения предпосылок мнк.
- •17. Интервалы прогноза по лин ур-нию парной регрессии. (Прогнозирование с применением ур-ния регрессии)..
- •18. Понятие и причины гетероскедастичности. Последствия гетероскедастичности. Обнаружение гетероскедастичности.
- •19. Нелинейная регрессия. Нелинейная модель и их линеаризация.
- •21. Мультиколлинеарность. Ее последствия. Способы обнаружения. Способы избавления.
- •20. Модель множественной регрессии. Выбор вида модели и оценка ее параметров
- •22. Отбор факторов при построении множественной регрессии. Процедура пошагового отбора переменных.
- •23. .Модель множеств регрессии.Выбор вида модели и оценка ее параметров.
- •24. Оценка параметров множественной регрессии методом наименьших квадратов (мнк). Свойства оценок мнк.
- •25. Понятие и причины автокорреляции остатков. Последствия автокорреляции остатков. Обнаружение автокорреляции остатков.
- •26. Проверка качества многофакторных регрессионных моделей. Оценка качества всего ур-ния регрессии.
- •27. Проверка качества многофакторных регрессионных моделей.Коэф-т детерминации r2. Скорректированный r2. Проверка гипотез с пом т-статистик и ф-статистик.
- •28. Оценка существенности параметров линейной регрессии.
- •29. Оценка влияния факторов на зависимую переменную (коэф-ты эл-ти,бета коэф-ты)
- •30. Анализ эк объектов и прогнозирование с помощью модели множ регрессии.
- •32. Регрессионные модели с переменной структурой (фиктивные переменные)
- •33. Многомерный статистический анализ. Задачи классификации объектов: кластерный анализ, дискриминантный анализ.
- •34. Мса. Задачи снижения размерности: факторный анализ, компонентный анализ.
- •35. Системы линейных одновременных уравнений (соу). Взаимозависимые и рекурсивные системы.
- •36. Косвенный мнк
- •37. Системы линейных одновременных уравнений.Условия идентификации
7. Анализ линейной стат-кой связи экономических данных, корреляция, вычисление коэф-в корреляции. Проверка значимости
Большинство эконом. объектов находятся во всеохватывающей взаимосвязи. Наилучшим аппаратом явл-ся аппарат корреляционно-регрессионного анализа. Существует 2 вида зависимостей между эконом. переменными: 1) функциональная; 2) стохастическая (вероятностная). При функц-ой связи – каждому значению одной величины ставят в соответствие опр. значение другой. Такие встречаются редко. Как правило, по значению одной величины можно предсказать с опр. вероятностью значение другой (или найти мат. ожидание). Эта связь называется вероятностной, иногда применяют название «корреляционная зависимость». Между понятиями «корреляция» и «регрессия» существует связь и в то же время они различны. Корреляция позволяет установить тесноту и направление связи между переменными (коэф-ми корреляции). Регрессия определяет форму зависимости, функцию связи (модель регрессии). Корр. анализ предназначен для изучения характера связи между случ. переменными. Задачи корр. анализа: 1.оценка тесноты связи; 2. определение направления связи; 3. выбор ведущих факторов; 4. опр-е ранее неизвестных причинных связей. Виды корреляции: 1. по числу переменных: частная, парная и множественная; 2. по виду связей: линейная и нелинейная; 3. по направлению связи: прямая и обратная. Для решения задач корр. анализа применяются 3 коэф-та корреляции: 1. парный, 2. множественный, 3. частный.
Коэф-т
парной линейной корреляции:
.
Свойства: 1) rx,y
находится в инт-ле (-1;1); 2) rx,y>0
– связь прямая, rx,y<0
– связь обратная; 3)
-
связь тесная,
-
связь слабая. Для оценки стат. значимости
коэф-та парной корреляции применяют
t-критерий
Стьюдента:
n
– количество данных в имеющихся
совокупностях. Если tтабл<t,
то коэф-т корреляции можно считать
статистически значимым.
Коэффициент
множественной корреляции.
Корреляционная матрица не дает ответов
на все вопросы, интересующие нас, для
данной совокупности переменных.
Возникают 2 дополнительные задачи: 1)
как связана интересующая нас величина
со всей совокупностью имеющихся
факторов; 2) какой будет связь двух
переменных при фиксировании или
исключении влияния др. переменных. Для
решения 1-ой задачи применяют коэф-т
множественной корреляции:
- определитель матрицы коэф-ов парной
корреляции, Rjj
– алгебраическое дополнение к элементу
этой матрицы, стоящей на пересечении
j-ой
строки
и j-ого
столбца. Практическую зависимость
имеет R2
– коэф-т детерминации, показывает,
какая доля случайных колебаний одной
величины обусловлена случайными
колебаниями другой величины. Свойства:
1) R2
принадлежит интервалу (0;1); 2)
- связь тесная.
Коэффициент
частной корреляции.
Этот коэф-т предназначен для оценки
тесноты связи между 2-мя переменными
при фиксировании или исключении влияния
др. переменных.
,
Rxy
– алгебраическое
дополнение к элементу корреляционной
матрицы, стоящему на пересечении строки
х
и столбца у.
Аналогично Rxx,
Ryy.
Свойства rxy
аналогичны
свойствам rx,y.
