Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпора по эконометрике.doc
Скачиваний:
36
Добавлен:
20.09.2019
Размер:
810.5 Кб
Скачать

20. Модель множественной регрессии. Выбор вида модели и оценка ее параметров

Модель парной регрессии устанавливает зависимость интересующей нас величины только от 1-го фактора. На показатель влияет целая совокупность факторов. Если использовать линейную математическую функцию, то в этом случае модель множественной регрессии примет вид yi=a0+a1xi1+a2xi2+a3xi3+…+amxim+ei. Каждый из параметров модели аi показывает, на сколько меняется исследуемая величина у при изменении соответствующего фактора на 1 единицу. Эта модель универсальна в том смысле, что позволяет установить зависимость показателя, как от всей совокупности факторов, так и от каждого из них в отдельности. Эта модель применяется при изучении проблем спроса, функции доходности акции, функции издержек производства, функции прибыли

Функция , описывающая зависимость показателя от параметров, называется уравнением (функцией) регрессии. Уравнение регрессии показывает ожидаемое значение зависимой переменной при определенных значениях зависимых переменных .

В зависимости от количества включенных в модель факторов Х модели делятся на однофакторные (парная модель регрессии) и многофакторные (модель множественной регрессии).

В зависимости от вида функции модели делятся на линейные и нелинейные.Модель множественной линейной регрессии имеет вид:y i = 0 + 1x i 1 +2x i 2 +…+ k x i k + i (2.1)

- количество наблюдений.

коэффициент регрессии j показывает, на какую величину в среднем изменится результативный признак , если переменную xj увеличить на единицу измерения, т. е. j является нормативным коэффициентом.

Коэффициент может быть отрицательным. Это означает, что область существования показателя не включает нулевых значений параметров. Если же а0>0, то область существования показателя включает нулевые значения параметров, а сам коэффициент характеризует среднее значение показателя при отсутствии воздействий параметров.

Анализ уравнения (2.1) и методика определения параметров становятся более наглядными, а расчетные процедуры существенно упрощаются, если воспользоваться матричной формой записи:

(2.2) .

Где У – вектор зависимой переменной размерности п  1, представляющий собой п наблюдений значений .

Х- матрица п наблюдений независимых переменных , размерность матрицы Х равна п  (k+1) . Дополнительный фактор Х0, состоящий из единиц, вводится для вычисления свободного члена. В качестве исходных данных могут быть временные ряды или пространственная выборка.

К - количество факторов, включенных в модель.

a — подлежащий оцениванию вектор неизвестных параметров размерности (k+1)  1;

— вектор случайных отклонений (возмущений) размерности п  1. отражает тот факт, что изменение будет неточно описываться изменением объясняющих переменных Х, так как существуют и другие факторы, неучтенные в данной модели.

Таким образом,

Y = ,

X = , ,

a = .

Уравнение (2.2) содержит значения неизвестных пара­метров 0,1,2,… ,k . Эти величины оцениваются на основе выборочных наблюдений, поэтому полученные расчетные показатели не являются истинными, а представляют собой лишь их статистические оценки. Модель линейной регрес­сии, в которой вместо истинных значений параметров под­ставлены их оценки (а именно такие регрессии и приме­няются на практике), имеет вид

, (2.3)

где A — вектор оценок параметров; е — вектор «оценен­ных» отклонений регрессии, остатки регрессии е = Y - ХА; —оценка значе­ний Y, равная ХА.