
- •Математическое моделирование в психологии
- •Введение.
- •История развития.
- •Математические модели в психологии.
- •Психологические измерения.
- •Моделирование психических процессов и поведения.
- •Детерминированные модели. Модели рефлексии.
- •«Формула человека» в.Лефевра.
- •Модели теории графов и геометрическое моделирование.
- •Кластерный анализ (ка).
- •Многомерное шкалирование (мш).
- •Стохастические модели. Вероятностные модели. Модели с латентными переменными.
- •Модели факторного анализа (фа).
- •Конфирматорный факторный анализ.
- •Модель латентных классов.
- •Модели научения.
- •Модели принятия решения.
- •Теория принятия решений.
- •Теория полезности.
- •Теория игр.
- •Динамическое программирование. Модели целенаправленного поведения.
- •Модели научения.
- •Модели интеллекта.
- •Перцептронные модели.
- •Моделирование естественного языка.
- •Нетрадиционные методы моделирования. Моделирование на «размытых» множествах.
- •Синергетика в психологии.
- •Рекомендуемая литература:
Модели научения.
Самые первые модели, применённые для описания процесса научения, представляли кривую научения как зависимость качества решения задачи от количества повторений (Р.Аткинсон, Г.Бауэр, 1969; Р.Буш, Ф.Мостеллер, 1962). Теория Торндайка трактует процесс научения как дифференциальное подкрепление существующих связей между раздражителями и ответами. Для К.Халла научение состоит в образовании связей, которые понимаются как устойчивые состояния. Для моделирования состояния были применены конечные автоматы. Под воздействием стимула подкрепления происходит смена состояний, определяющих связи между раздражителями и ответами. Для описания такой структуры использовались автоматы подкрепления, являющиеся частным случаем автоматов состояния. Эти автоматы могут моделировать процесс научения.
Многие исследователи для описания процесса научения обращаются к понятию выдвижения гипотез. Эти модели сходны с моделями, основанными на автоматах подкреплений. Термины «множество состояний» и «множество гипотез» эквивалентны. Для описания процесса перехода из состояния в состояние или смены гипотез часто применяется аппарат цепей Маркова. Существенным недостатком моделей этого класса является то, что они не отражают структуру связей между ситуациями и реакциями на них в процессе научения, не описывают процессов формирования и модификации гипотез.
Модели интеллекта.
Теоретики искусственного интеллекта (ИИ) дают различные определения этого понятия, соответственно которым в исследованиях выделяются две основные цели:
Первая – создание программ для автоматизации интеллектуальной человеческой деятельности (П.Уинстон).
Вторая, связанная с исследованиями в психологии, - использование программ ИИ для объяснения процессов, протекающих у человека при решении тех или иных задач (Н.Нильсон, Т.Фейген).
Э.Хант (1978) под содержанием понятия «искусственный интеллект» понимает: игры, распознавание образов, решение задач, адаптивное программирование, принятие решений, обработку данных на естественном языке и т.д. Многие концепции ИИ, несомненно, повлияли на развитие психологической науки.
При моделировании интеллекта в психологии можно выделить следующие подходы:
аппарат распознавания образов, который основан на процедуре Бэйеса;
классический статистический подход;
размытые множества;
синергетика.
Теория размытых множеств и синергетика относятся к новейшим подходам.
Современные исследования в этой области начались в Институте Карнеги с написания программ, решающих задачи. Основной интерес представляло то, как люди решают задачи (А.Ньюэлл, Г.Саймон, 1972). В работах многих других исследователей ИИ рассматривается скорее как расширение математики, а не как дисциплина математической психологии (Дж.Мак-Карти, М.Минский, 1961). Другое направление ИИ – это распознавание образов, которое начиналось с машинных программ классификации. В дальнейшем О.Селфридж (1959) предложил осуществлять распознавание образов, вычисляя «взвешенную» сумму ряда классификаций. К проблеме распознавания можно «подходить», анализируя аналогии, которые прослеживаются в биологических процессах. Мак-Каллок и Питте (1943) доказали, что любую функцию можно реализовывать с помощью должным образом организованной сети идеальных нейронов. Логическим продолжением нейрологических теорий явилось понятие перцептрона.