
- •1.2. Прямоугольная система координат на плоскости.
- •1.3. Полярная система координат.
- •1.4. Связь между полярными и декартовыми координатами.
- •1.5. Расстояние между двумя точками.
- •Деление отрезка в данном отношении.
- •1.7. Площадь треугольника.
- •2.1. Уравнение линии на плоскости.
- •2.2. Уравнение прямой с угловым коэффициентом.
- •2.3. Уравнение прямой по точке и угловому коэффициенту.
- •2.4. Уравнение прямой, проходящей через две данные точки.
- •2.5. Общее уравнение прямой.
- •2.6. Уравнение прямой в отрезках на осях координат.
- •2.7. Угол между прямыми на плоскости.
- •2.8. Условия параллельности и перпендикулярности прямых на плоскости.
- •3.1. Расстояние от точки до прямой.
- •3.2. Взаимное расположение двух прямых на плоскости.
- •4.1. Эллипс. Окружность.
- •4.2. Гипербола.
- •4.3. Парабола.
- •5.1 Понятие о матрице.
- •5.2. Сложение и вычитание матриц.
- •5.3. Умножение матрицы на число.
- •5.4. Умножение матриц.
- •5.5. Транспонирование матрицы.
- •5.6. Элементарные преобразования строк матрицы.
- •5.7. Ступенчатая матрица. Ранг матрицы.
- •6.1. Определители второго порядка.
- •6.2. Определители третьего порядка.
- •6.3. Определитель n-го порядка (n n).
- •6.4. Свойства определителей.
- •6.5. Обратная матрица.
- •7.1. Систем линейных уравнений.
- •7.2. Критерий совместности системы линейных уравнений.
- •7.3. Метод Гаусса решения системы линейных уравнений.
- •7.4. Правило Крамера решения систем линейных уравнений.
- •7.5. Матричный метод решения систем линейных уравнений.
- •8.1. Прямоугольная декартова система координат в пространстве.
- •8.2. Понятие вектора.
- •8.3. Линейные операции над векторами.
- •8.4. Проекция вектора на ось.
- •8.5. Координаты вектора.
- •8.6. Длина вектора. Расстояние между точками в пространстве.
- •8.7. Деление отрезка в данном отношении.
- •9.1. Разложение вектора по базисным векторам.
- •9.2. Скалярное произведение векторов.
- •9.3. Правые и левые системы координат.
- •9.4. Векторное произведение двух векторов.
- •9.5. Смешанное произведение векторов.
- •10.1. Плоскость в пространстве.
- •10.1.1. Уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору.
- •10.1.2.Общее уравнение плоскости.
- •10.1.3. Уравнение плоскости, проходящей через три точки.
- •10.1.4. Взаимное расположение двух плоскостей.
- •10.1.5. Угол между двумя плоскостями.
- •10.2. Прямая в пространстве.
- •10.2.1. Векторно-параметрическое уравнение прямой.
- •10.2.6. Взаимное расположение прямых в пространстве.
- •10.3. Задачи на прямую и плоскость в пространстве.
- •10.3.1. Прямая как пересечение двух плоскостей.
- •10.3.2. Взаимное расположение прямой и плоскости.
- •10.3.3. Угол между прямой и плоскостью.
- •10.3.4. Расстояние от точки до плоскости.
- •10.4. Цилиндры второго порядка.
- •10.5. Поверхности вращение второго порядка.
- •10.6. Поверхности второго порядка.
- •11.1. Линейные пространства и их простейшие свойства.
- •11.2. Линейная зависимость и независимость векторов.
- •11.3. Размерность и базис линейного пространства.
- •12.1. Понятие функции.
- •12.2. Понятие функции нескольких переменных.
- •12.3. Предел функции.
- •12.4. Односторонние пределы функции.
- •12.5. Предел функции при стремлении аргумента к бесконечности.
- •12.6. Бесконечно большие и бесконечно малые функции.
- •13.1. Основные теоремы о пределах функций.
- •13.2. Замечательные пределы.
- •14.2. Точки разрыва функции и их классификация.
- •17.1. Признак возрастания и убывания функции.
- •17.2. Экстремум функции. Необходимое и достаточное условие экстремума.
- •17.3. Направления выпуклости, точки перегиба.
- •17.4. Асимптоты.
- •17.5. Исследование функций и построение графиков.
- •18.1. Понятие о первообразной функции.
- •18.2. Неопределённый интеграл и его свойства.
- •18.3. Таблица основных неопределённых интегралов.
- •18.4 Понятие об основных методах интегрирования.
- •19.1. Задача о площади криволинейной трапеции.
- •19.2. Понятие определённого интеграла.
- •19.3. Свойства определенного интеграла.
- •19.4. Теорема об оценке определённого интеграла. Теорема о среднем.
- •19.5. Определённый интеграл с переменным верхним пределом, его свойства. Формула Ньютона-Лейбница.
- •19.6. Основные методы интегрирования.
- •19.7. Приложения определённого интеграла.
- •19.7.1. Площадь криволинейной трапеции.
- •19.7.3. Площадь поверхности вращения.
- •19.7.4. Объём тела.
- •20.1. Интегралы с бесконечными пределами.
- •20.2. Интегралы от неограниченных функций.
- •21.1. Основные понятия.
- •21.2. Предел и непрерывность.
- •21.3. Частные производные первого порядка.
- •21.4. Частные производные высших порядков.
- •21.5. Дифференцируемость полный дифференциал.
- •21.6. Экстремум функции двух переменных.
- •21.7. Метод наименьших квадратов.
- •22.1. Двойной интеграл и его свойства.
- •Вычисление двойного интеграла в прямоугольных декартовых координатах.
- •22.2. Тройной интеграл и его вычисление.
- •23.1.Основные понятия.
- •23.1.Основные свойства числовых рядов.
- •23.3. Положительные ряды.
- •23.4. Знакочередующиеся ряды.
- •23.5. Абсолютная и условная сходимость.
- •23.6. Функциональные ряды.
- •23.7. Степенные ряды.
- •24.1. Основные понятия.
- •24.2. Дифференциальные уравнения первого порядка.
- •25.2. Случаи понижения порядка.
- •25.3. Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами.
- •25.3.1. Линейное однородное ду второго порядка с постоянными коэффициентами имеет вид
- •25.3.2. Линейное неоднородное ду второго порядка с постоянными коэффициентами имеет вид
6.2. Определители третьего порядка.
Рассмотрим квадратную матрицу третьего порядка
А = .
Определение. Определителем третьего порядка, соответствующим матрице А, называется число, вычисляемое по формуле
│А│=
=
.
Чтобы запомнить, какие произведения в правой части равенства следует брать со знаком «плюс», а какие ─ со знаком «минус», полезно запомнить правило, называемое правилом треугольника:
= ─ .
Рассмотрим ещё один способ вычисления определителя третьего порядка.
Определение. Минором Mij элемента aij определителя называется определитель, полученный из данного вычёркиванием i-й строки и j-го столбца. Алгебраическим дополнением Aij элемента aij определителя называется его минор Mij, взятый со знаком (-1)i+j.
Теорема 1. Определитель третьего порядка равен сумме произведений элементов какой-либо строки (столбца) на их алгебраические дополнения.
Док-во. По определению
= . (1)
Выберем, например, вторую строку и найдём алгебраически дополнения А21, А22, А23:
А21
= (-1)2+1
= -(
)
=
,
А22
= (-1)2+2
=
,
А23
= (-1)2+3
= - (
)
=
.
Преобразуем теперь формулу (1)
│А│=
(
)
+
(
)
+
(
)
=
А21
+
А22
+
А23.
Формула
│А│= А21 + А22 + А23.
называется разложением определителя │А│ по элементам второй строки. Аналогично разложение можно получить по элементам других строк и любого столбца
6.3. Определитель n-го порядка (n n).
Определение. Определителем n-го порядка, соответствующим матрице n-го порядка
А
=
называется число, равное сумме произведений элементов какой-либо строки (столбца) на их алгебраические дополнения, т.е.
│A│=
Аi1
+
Ai2
+ … +
Ain
=
А1j
+
A2j
+ … +
Anj
Нетрудно
заметить, что при n
= 2 получается формула для вычисления
определителя второго порядка. Если n
= 1, то по определению будем считать
|A|=|a
|=a
.
6.4. Свойства определителей.
Определение. Матрицу вида
или
будем называть треугольной матрицей.
Свойство 1. Определитель треугольной матрицы равен произведению элементов главной диагонали, т.е.
=
=
.
Свойство 2. Определитель матрицы с нулевой строкой или нулевым столбцом равен нулю.
Свойство 3. При транспонировании матрицы определитель не изменяется, т.е.
│А│= │Аt│.
Свойство 4. Если матрица В получается из матрицы А умножением каждого элемента некоторой строки на число k, то
│В│= k│А│.
Свойство 5.
=
+
.
Свойство 6. Если матрица В получается из матрицы А перестановкой двух строк,
то│В│= −│А│.
Свойство 7. Определитель матрицы с пропорциональными строками равен нулю, в частности, нулю равен определитель матрицы с двумя одинаковыми строками.
Свойство 8. Определитель матрицы не изменяется, если к элементам одной строки прибавить элементы другой строки матрицы, умноженные на некоторое число.
Замечание. Так как по свойству 3 определитель матрицы не меняется при транспонировании, то все свойства о строках матрицы верны и для столбцов.
Свойство 9. Если А и В ─ квадратные матрицы порядка n, то │АВ│=│А││В│.