
- •1.2. Прямоугольная система координат на плоскости.
- •1.3. Полярная система координат.
- •1.4. Связь между полярными и декартовыми координатами.
- •1.5. Расстояние между двумя точками.
- •Деление отрезка в данном отношении.
- •1.7. Площадь треугольника.
- •2.1. Уравнение линии на плоскости.
- •2.2. Уравнение прямой с угловым коэффициентом.
- •2.3. Уравнение прямой по точке и угловому коэффициенту.
- •2.4. Уравнение прямой, проходящей через две данные точки.
- •2.5. Общее уравнение прямой.
- •2.6. Уравнение прямой в отрезках на осях координат.
- •2.7. Угол между прямыми на плоскости.
- •2.8. Условия параллельности и перпендикулярности прямых на плоскости.
- •3.1. Расстояние от точки до прямой.
- •3.2. Взаимное расположение двух прямых на плоскости.
- •4.1. Эллипс. Окружность.
- •4.2. Гипербола.
- •4.3. Парабола.
- •5.1 Понятие о матрице.
- •5.2. Сложение и вычитание матриц.
- •5.3. Умножение матрицы на число.
- •5.4. Умножение матриц.
- •5.5. Транспонирование матрицы.
- •5.6. Элементарные преобразования строк матрицы.
- •5.7. Ступенчатая матрица. Ранг матрицы.
- •6.1. Определители второго порядка.
- •6.2. Определители третьего порядка.
- •6.3. Определитель n-го порядка (n n).
- •6.4. Свойства определителей.
- •6.5. Обратная матрица.
- •7.1. Систем линейных уравнений.
- •7.2. Критерий совместности системы линейных уравнений.
- •7.3. Метод Гаусса решения системы линейных уравнений.
- •7.4. Правило Крамера решения систем линейных уравнений.
- •7.5. Матричный метод решения систем линейных уравнений.
- •8.1. Прямоугольная декартова система координат в пространстве.
- •8.2. Понятие вектора.
- •8.3. Линейные операции над векторами.
- •8.4. Проекция вектора на ось.
- •8.5. Координаты вектора.
- •8.6. Длина вектора. Расстояние между точками в пространстве.
- •8.7. Деление отрезка в данном отношении.
- •9.1. Разложение вектора по базисным векторам.
- •9.2. Скалярное произведение векторов.
- •9.3. Правые и левые системы координат.
- •9.4. Векторное произведение двух векторов.
- •9.5. Смешанное произведение векторов.
- •10.1. Плоскость в пространстве.
- •10.1.1. Уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору.
- •10.1.2.Общее уравнение плоскости.
- •10.1.3. Уравнение плоскости, проходящей через три точки.
- •10.1.4. Взаимное расположение двух плоскостей.
- •10.1.5. Угол между двумя плоскостями.
- •10.2. Прямая в пространстве.
- •10.2.1. Векторно-параметрическое уравнение прямой.
- •10.2.6. Взаимное расположение прямых в пространстве.
- •10.3. Задачи на прямую и плоскость в пространстве.
- •10.3.1. Прямая как пересечение двух плоскостей.
- •10.3.2. Взаимное расположение прямой и плоскости.
- •10.3.3. Угол между прямой и плоскостью.
- •10.3.4. Расстояние от точки до плоскости.
- •10.4. Цилиндры второго порядка.
- •10.5. Поверхности вращение второго порядка.
- •10.6. Поверхности второго порядка.
- •11.1. Линейные пространства и их простейшие свойства.
- •11.2. Линейная зависимость и независимость векторов.
- •11.3. Размерность и базис линейного пространства.
- •12.1. Понятие функции.
- •12.2. Понятие функции нескольких переменных.
- •12.3. Предел функции.
- •12.4. Односторонние пределы функции.
- •12.5. Предел функции при стремлении аргумента к бесконечности.
- •12.6. Бесконечно большие и бесконечно малые функции.
- •13.1. Основные теоремы о пределах функций.
- •13.2. Замечательные пределы.
- •14.2. Точки разрыва функции и их классификация.
- •17.1. Признак возрастания и убывания функции.
- •17.2. Экстремум функции. Необходимое и достаточное условие экстремума.
- •17.3. Направления выпуклости, точки перегиба.
- •17.4. Асимптоты.
- •17.5. Исследование функций и построение графиков.
- •18.1. Понятие о первообразной функции.
- •18.2. Неопределённый интеграл и его свойства.
- •18.3. Таблица основных неопределённых интегралов.
- •18.4 Понятие об основных методах интегрирования.
- •19.1. Задача о площади криволинейной трапеции.
- •19.2. Понятие определённого интеграла.
- •19.3. Свойства определенного интеграла.
- •19.4. Теорема об оценке определённого интеграла. Теорема о среднем.
- •19.5. Определённый интеграл с переменным верхним пределом, его свойства. Формула Ньютона-Лейбница.
- •19.6. Основные методы интегрирования.
- •19.7. Приложения определённого интеграла.
- •19.7.1. Площадь криволинейной трапеции.
- •19.7.3. Площадь поверхности вращения.
- •19.7.4. Объём тела.
- •20.1. Интегралы с бесконечными пределами.
- •20.2. Интегралы от неограниченных функций.
- •21.1. Основные понятия.
- •21.2. Предел и непрерывность.
- •21.3. Частные производные первого порядка.
- •21.4. Частные производные высших порядков.
- •21.5. Дифференцируемость полный дифференциал.
- •21.6. Экстремум функции двух переменных.
- •21.7. Метод наименьших квадратов.
- •22.1. Двойной интеграл и его свойства.
- •Вычисление двойного интеграла в прямоугольных декартовых координатах.
- •22.2. Тройной интеграл и его вычисление.
- •23.1.Основные понятия.
- •23.1.Основные свойства числовых рядов.
- •23.3. Положительные ряды.
- •23.4. Знакочередующиеся ряды.
- •23.5. Абсолютная и условная сходимость.
- •23.6. Функциональные ряды.
- •23.7. Степенные ряды.
- •24.1. Основные понятия.
- •24.2. Дифференциальные уравнения первого порядка.
- •25.2. Случаи понижения порядка.
- •25.3. Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами.
- •25.3.1. Линейное однородное ду второго порядка с постоянными коэффициентами имеет вид
- •25.3.2. Линейное неоднородное ду второго порядка с постоянными коэффициентами имеет вид
7.4. Правило Крамера решения систем линейных уравнений.
Габриэль Крамер (1704 – 1752) ─ швейцарский математик, который в 1750 г. нашёл метод решения систем линейных уравнений, названный впоследствии правилом Крамера.
Определение. Система линейных уравнений называется крамеровской, если тело уравнений равно числу неизвестных и определитель матрицы системы отличен от нуля.
Теорема 7.1. Крамеровская система имеет единственное решение, которое находится по формулам
где
─ определитель матрицы системы,
─ определитель, полученный из
,
заменой столбца коэффициентов при
на столбец свободных членов.
Доказательство. Пусть дана крамеровская система
(4)
Тогда
│А│=
∆ =
0.
По теореме 3 лекции 6 матрица системы А имеет обратную матрицу А-1.
Запишем крамеровскую систему (4) в матричном виде
АХ = В (5)
где
А = , Х = , В = .
Умножим обе части матричного уравнения (5) слева на А-1:
А-1(АХ) = А-1В,
Ввиду ассоциативности умножения матриц имеем
А-1(АХ) = (А-1А)Х = ЕТХ = Х.
Таким образом,
Х = А-1В ─ решение системы.
1) Покажем, что такое решение единственно. Предположим, что Х1 и Х2 ─ два решения матричного уравнения (5). Тогда АХ1 = В и АХ2 = В, откуда АХ1 = АХ2. Умножая обе чисти равенства на А-1 слева, имеем
А-1(АХ1) = А-1(АХ2),
(А-1А)Х1 = (А-1А)Х2,
ЕnХ1 = ЕnХ2,
Х1 = Х2.
Следовательно, система (4) имеет единственное решение.
2) Найдём решение системы (4). Из равенства Х = А-1В имеем:
=
,
откуда
,
,
……………………………………………………..
.
Обозначая
определители в правой части равенств
соответственно, получим формулы
.
7.5. Матричный метод решения систем линейных уравнений.
Этот метод также применяется для решения крамеровских систем. Основан он на равенстве
Х = А-1В,
кторое мы получили при доказательстве теоремы 7.1.
8.1. Прямоугольная декартова система координат в пространстве.
Прямоугольная (декартова) система координат в пространстве определяется заданием масштабной единицы измерения длин и трёх пересекающихся в одной точке О взаимно перпендикулярных осей Ох, Оу и Оz. Точка О называется началом координат, Ох ─ осью ординат, Oz ─ осью аппликат (рис.8.1).
П
усть
М ─ произвольная точка пространства
(рис.8.1). Проведём через точку М три
плоскости, перпендикулярные координатным
осям. Точки пересечения с осями Ох, Оу
и Оz
обозначим соответственно Мх,
Му
и Мz.
Прямоугольными
(декартовыми)
координатами
точки М в
пространстве называются числа х0,
у0
и z0,
соответствующие точками Мх,
Му
и Мz
на
соответствующих осях. При этом х0
называется абсциссой,
у0
─ ординатой,
z0
─ аппликатой
точки М. То, что точка М имеет координаты
х0,
у0
и z0
обозначается: М(х0;
у0;z0).
Плоскости Оху, Оуz и Охz называются координатными плоскостями. Они делят всё пространство на восемь частей, называемых октантами.