
- •0. Лекция: Введение
- •1. Лекция: Понятие модели и моделирования:
- •1.1. Общее определение модели
- •1.2. Классификация моделей и моделирования
- •1.2.1. Классификация моделей и моделирования по признаку "характер моделируемой стороны объекта"
- •1.2.2. Классификация моделей и моделирования по признаку "характер процессов, протекающих в объекте"
- •1.2.3. Классификация моделей и моделирования по признаку "способ реализации модели"
- •1.3. Этапы моделирования
- •1.4. Адекватность модели
- •1.5. Требования, предъявляемые к моделям
- •2.1. Дискретные марковские процессы
- •2.2. Моделирование по схеме непрерывных марковских процессов
- •2.3. Схема гибели и размножения
- •2.4. Элементы смо, краткая характеристика
- •2.5. Моделирование смо в классе непрерывных марковских процессов
- •2.5.1. Многоканальная смо с отказами
- •2.5.2. Многоканальная смо с ожиданием
- •2.5.3. Одноканальная смо с ограниченной очередью
- •2.5.4. Одноканальная замкнутая смо
- •2.5.5. Одноканальная смо с конечной надежностью
- •2.6. Метод динамики средних. Сущность и содержание метода
- •2.7. Принцип квазирегулярности
- •2.8. Элементарные модели боя
- •2.8.1. Модель высокоорганизованного боя
- •2.8.2. Высокоорганизованный бой с пополнением группировок
- •2.8.3. Высокоорганизованный бой с упреждением ударов
- •2.8.4. Модель боя с неполной информацией
- •2.8.5. Учет запаздывания в переносе и открытии огня
- •3. Лекция: Статистическое моделирование:
- •3.1. Сущность имитационного моделирования
- •3.2. Общая характеристика метода имитационного моделирования
- •3.3. Статистическое моделирование при решении детерминированных задач
- •3.4. Моделирование равномерно распределенной случайной величины
- •3.5. Моделирование случайной величины с произвольным законом распределения
- •3.6. Моделирование единичного события
- •3.7. Моделирование полной группы несовместных событий
- •3.8. Моделирование совместных независимых событий
- •3.8.1. Определение совместных исходов по жребию
- •3.8.2. Последовательная проверка исходов
- •3.9. Моделирование совместных зависимых событий
- •3.10. Классификация случайных процессов
- •3.11. Способы продвижения модельного времени
- •3.12. Модель противоборства двух сторон
- •3.13. Модель противоборства как процесс блуждания по решетке
- •3.14. Типовая схема имитационной модели с продвижением времени по событиям
- •3.15. Имитационная модель системы массового обслуживания
- •4. Лекция: Планирование экспериментов
- •4.1. Сущность и цели планирования эксперимента
- •4.2. Элементы стратегического планирования экспериментов
- •4.3. Стандартные планы
- •4.4. Формальный подход к сокращению общего числа прогонов
- •4.5. Элементы тактического планирования
- •4.6. Точность и количество реализаций модели при определении средних значений параметров
- •4.6.1. Определение оценки матожидания
- •4.6.2. Определение оценки дисперсии
- •4.7. Точность и количество реализаций модели при определении вероятностей исходов
- •4.8. Точность и количество реализаций модели при зависимом ряде данных
- •4.9. Проблема начальных условий
- •5. Лекция: Обработка результатов имитационного эксперимента
- •5.1. Характеристики случайных величин и процессов
- •5.2. Требования к оценкам характеристик
- •5.3. Оценка характеристик случайных величин и процессов
- •5.4. Гистограмма
- •5.4. Элементы дисперсионного анализа. Критерий Фишера
- •5.6. Критерий Вилькоксона
- •5.7. Однофакторный дисперсионный анализ
- •5.8. Выявление несущественных факторов
- •5.9. Сущность корреляционного анализа
- •5.10. Обработка результатов эксперимента на основе регрессии
- •6. Лекция: Моделирование в gpss World
- •6.1. Основы построения и принципы функционирования языка имитационного моделирования
- •6.2. Построение моделей с устройствами
- •6.2.1. Организация поступления транзактов в модель и удаления транзактов из нее
- •6.2.1.1. Поступление транзактов в модель
- •6.2.1.2. Удаление транзактов из модели и завершение моделирования
- •6.2.1.3. Изменение значений параметров транзактов
- •6.2.2. Занятие и освобождение одноканального устройства
- •6.2.3. Имитация обслуживания посредством задержки во времени
- •6.2.4. Проверка состояния одноканального устройства
- •6.2.5. Методы сбора статистики в имитационной модели
- •6.2.5.1. Регистратор очереди
- •6.2.5.1. Статистические таблицы
- •6.2.6. Методы изменения маршрутов движения транзактов в модели
- •6.2.6.1. Блок transfer
- •6.2.6.2. Блок displace
- •6.2.7. Прерывание функционирования одноканального устройства
- •6.2.7.1. Прерывание в приоритетном режиме
- •6.2.7.2. Прерывание в режиме "захвата"
- •6.2.7.3. Проверка состояния одноканального устройства, функционирующего в приоритетном режиме
- •6.2.8. Недоступность одноканального устройства
- •6.2.8.1. Перевод в недоступное состояние и восстановление доступности
- •6.2.8.2. Проверка состояний недоступности и доступности одноканального устройства
- •6.2.9. Сокращение машинного времени и изменение дисциплин обслуживания методом применения списков пользователя
- •6.2.9.1. Ввод транзактов в список пользователя в безусловном режиме
- •6.2.9.2. Вывод транзактов из списка пользователя в условном режиме
- •6.2.10. Построение моделей систем с многоканальными устройствами и переключателями
- •6.2.10.1. Занятие многоканального устройства и его освобождение
- •6.2.10.2. Перевод многоканального устройства в недоступное состояние и восстановление его доступности
- •6.2.10.3. Проверка состояния многоканального устройства
- •6.2.10.4. Моделирование переключателей
- •6.3. Решение прямой и обратной задач в системе моделирования
- •6.3.1. Постановка прямой и обратной задач
- •6.3.2. Решение прямой задачи
- •6.3.2.1. Блок-диаграмма модели
- •6.3.2.2. Программа модели
- •6.3.2.3. Ввод текста программы модели, исправление ошибок и проведение моделирования
- •6.3.3. Решение обратной задачи
- •6.4. Пример построения моделей с оку, мку и списками пользователя
- •6.4.1. Модель процесса изготовления изделий на предприятии. Прямая задача
- •6.4.1.1. Постановка задача
- •6.4.1.2. Исходные данные
- •6.4.1.3. Задание на исследование
- •6.4.1.4. Уяснение задачи на исследование
- •6.4.1.5. Блок-диаграмма модели
- •6.4.1.6. Программа модели
- •6.4.2. Модель процесса изготовления изделий на предприятии. Обратная задача
- •6.4.2.1. Постановка задачи
- •6.4.2.2. Программа модели
- •6.5. Уменьшение числа объектов в модели
- •6.5.1. Постановка задачи
- •6.5.2. Исходные данные
- •6.5.3. Задание на исследование
- •6.5.4. Блок-диаграмма модели
- •6.5.5. Программа модели
- •6.6. Применение матриц, функций и изменение версий модели
- •6.6.1. Постановка задачи бизнес-процесса
- •6.6.2. Уяснение задачи
- •6.6.3. Программа модели
- •6.7. Моделирование неисправностей одноканальных устройств
- •6.7.1. Постановка задачи
- •6.7.2. Исходные данные
- •6.7.3. Задание на исследование
- •6.7.4. Уяснение задачи
- •6.7.5. Программа модели
- •6.8. Моделирование неисправностей многоканальных устройств
- •6.8.1. Постановка задачи
- •6.8.2. Программа модели
- •7. Лекция: Организация компьютерных экспериментов
- •7.1. Дисперсионный анализ (отсеивающий эксперимент). Прямая задача
- •7.2. Регрессионный анализ (оптимизирующий эксперимент). Прямая задача
- •7.3. Дисперсионный анализ (отсеивающий эксперимент). Обратная задача
- •7.3.1. Постановка задачи
- •7.3.2. Исходные данные
- •7.3.3. Задание на исследование
- •7.3.4. Уяснение задачи на исследование
- •7.3.5. Программа модели
- •7.3.6. Проведение экспериментов
- •8. Лекция: Разработка имитационных моделей в виде приложений с интерфейсом
- •8.1. Применение текстовых объектов и потоков данных
- •8.1.1. Блок open
- •8.1.2. Блок close
- •8.1.3. Блок read
- •8.1.4. Блок write
- •8.1.5. Блок seek
- •8.2. Разработка модели в gpss World
- •8.2.1. Постановка задачи
- •8.2.2. Программа модели
- •8.3. Создание стартовой формы приложения - имитационной модели
- •8.3 Добавление компонент в стартовую форму имитационной модели
- •8.3.1. Добавление полей редактирования
- •8.3.2. Добавление меток
- •8.3.3. Добавление компонент для ввода и вывода данных, представленных в виде таблиц
- •8.3.4. Добавление командных кнопок
- •8.4. События и процедуры обработки событий
- •8.4.1. События
- •8.4.2. Разработка процедур обработки событий для кнопок
- •8.4.3. Разработка процедур обработки событий для полей редактирования
- •8.4.4. Модификация программы имитационной модели
- •8.5. Работа с приложением
6.8. Моделирование неисправностей многоканальных устройств
6.8.1. Постановка задачи
Ранее отмечалось, что осуществить имитацию выхода МКУ из строя, при котором все транзакты, находившиеся в МКУ на обслуживании, теряются, блоками SUNAVAIL и SAVAILневозможно. Рассмотрим, как это можно осуществить с применением блока DISPLACE на следующем примере.
Многоканальная СМО с отказами без очереди. СМО имеет конечную надежность. При выходе СМО из строя заявки, находившиеся на обслуживании, теряются. Новые заявки на обслуживание не принимаются.
6.8.2. Программа модели
; Модель многоканальной СМО конечной надежности
; Определение МКУ и булевых переменных
Emk EQU 7
Zap EQU 2
Sist STORAGE 7
Kont1 BVARIABLE SV$Sist'AND'((7-S$Sist)>=Zap)
Kont2 BVARIABLE SE$Sist
; Сегмент имитации поступления и обслуживания заявок
GENERATE 2,,,7 ; Источник заявок
Met12 TEST E BV$Kont1,1,Met1 ; Есть ли место в МКУ?
SAVEVALUE KolPovt,(INT(Emk/Zap)) ENTER Sist,Zap ; Занять МКУ
; Учет номеров транзактов, занявших МКУ
ASSIGN KolPovt,X$KolPovt ; Запись в параметр цикла
Met5 TEST E X*KolPovt,0,Met4 ; Есть ли в списке место?
SAVEVALUE P$KolPovt,XN1 ; Да, записать номер транзакта
TRANSFER ,Met6 ; Выйти из цикла
Met4 LOOP KolPovt,Met5 ; Повторить или конец цикла
; Met6 ADVANCE 5 ; Имитация обслуживания
LEAVE Sist,Zap ; Освободить МКУ
; Учет номеров транзактов, освободивших МКУ
ASSIGN KolPovt,X$KolPovt ; Запись в параметр цикла
Met8 TEST E X*KolPovt,XN1,Met7 ; Есть ли этот номер транзакта?
SAVEVALUE P$KolPovt,0 ; Да, тогда удалить
TRANSFER ,Met9 ; Выйти из цикла
Met7 LOOP KolPovt,Met8 ; Повторить или конец цикла
Met9 TERMINATE 1 ; Обслуженные заявки
Met1 TERMINATE 1 ; Потерянные заявки
; Сегмент имитации неисправностей
GENERATE ,,,1
Met2 ADVANCE 7.5 ; Интервал отказов
SUNAVAIL Sist ; Перевод в недоступность
; Удаление транзактов из МКУ
ASSIGN KolPovt,X$KolPovt ; Запись в параметр цикла
Met10 TEST NE X*KolPovt,0,Met11 ; Есть ли транзакт в МКУ
DISPLACE X*KolPovt,Met3 ; Да, тогда удалить
SAVEVALUE P$KolPovt,0 ; Снять с учета
Met11 LOOP KolPovt,Met10 ; Повторить или конец цикла
TEST E BV$Kont2,1 ; МКУ пуст?
ADVANCE 1 ; Да, тогда ремонтируем
SAVAIL Sist ; Перевод в доступность
TRANSFER ,Met2
Met3 LEAVE Sist,2 ; Освободить МКУ
TERMINATE 1 ; Удаленные из МКУ транзакты
В данной модели кроме блока DISPLACE показывается также применение булевых переменных.
Булевы переменные с использованием всего лишь одного блока дают возможность принимать решения в зависимости от состояния и значения атрибутов многих объектов GPSS. Булева переменная представляет собой логическое выражение, составленное из различных СЧА, в том числе и других булевых переменных.
Булева переменная определяется командой BVARIABLE.
Формат команды:
Name BVARIABLE A
Name - имя булевой переменной, которое также, как и имя арифметической переменной, по желанию пользователя командой EQU может быть заменено номером.
Операнд А - логическое выражение.
В выражении можно использовать арифметические и логические операторы. Результат преобразуется в целое значение 0, если равен нулю, или в целое значение 1, если отличен от нуля.
Логические операторы связаны с объектами аппаратной категории и используются для определения состояния этих объектов.
Имеются следующие логические операторы:
FVj равен 1, если устройство j доступно, иначе - 0 ;
FIj равен 1, если устройство j обслуживает прерывание, иначе - 0 ;
SFj равен 1, если МКУ j заполнено полностью, иначе - 0 ;
SEj равен 1, если МКУ j пусто, иначе - 0 ;
SVj равен 1, если МКУ j доступно, иначе - 0 ;
LSj равен 1, если логический ключ j включен, иначе - 0. Под j понимается номер или имя.
Например:
Oky BVARIABLE FV$Rem1
Can3 BVARIABLE SF$Usel
Prov1 BVARIABLE SV$Pusk
Prov2 BVARIABLE LS2
В первом примере булева переменная Oky равна 1, если устройство Rem1 доступно, и - 0, если не доступно. Во втором примере булева переменная Can3 равна 1, если МКУUsel заполнено полностью. В третьем примере булева переменная Prov1 равна 1, если МКУ Pusk доступно. В четвертом примере булева переменная Prov2 равна 1, если логический ключ номер 2 включен.
Операторы отношения производят алгебраическое сравнение операндов. Например:
Prov1 BVARIABLE V$VseAvt'G'16
Prov2 BVARIABLE Q5$'LE'P3
Prov3 BVARIABLE MX$Plan(Stroka,Stolbez)'GE'P2
Булева переменная Prov1 равна 1, если переменная VseAvt больше 16, иначе равна 0. Во втором примере булева переменная Prov2 равна 1, если текущая длина очереди номер 5 меньше или равна значению параметра 3 транзакта. В третьем примере булева переменная Prov3 равна 1, если значение определенного элемента матрицы Planбольше или равно значению параметра 2.
Булевых операторов два: OR - ИЛИ и AND - И. Оператор ИЛИ проверяет выполнение хотя бы одного из условий, а оператор И требует выполнения обоих условий. Например:
Con1 BVARIABLE FI$Rem"OR"SF4
Con2 BVARIABLE FI$Rem"AND"SF$Pogr
Con3 BVARIABLE (V3'G'7)"AND"(FN$Rav"OR"LS7)
Булева переменная Con1 равна 1, если выполняется одно из условий: устройство Rem обслуживает прерывание или память номер 4 не заполнена. Булева переменная Con2равна 1, если выполняются оба условия: устройство Rem обслуживает прерывание и память с именем Pogr не заполнена. В третьем примере переменная Con3 равна 1, если выполняются оба условия: значение переменной номер 3 больше 7 и логический ключ номер 7 включен.
Скобки в третьем примере нужны только для задания определенных булевых соотношений. Скобки следует использовать только в тех случаях, когда они необходимы.
Если булева переменная задается СЧА, как например
Stan BVARIABLE V$TreAvt
то вычисляется значение арифметической переменной с именем TreAvt и если оно отлично от нуля - значение булевой переменной Stan будет равно 1, в противном случае -0.
Рассмотрим работу модели.
Блок GENERATE с интервалами две единицы модельного времени генерирует семь транзактов. Следующий за ним блок TEST проверяет МКУ Sist на исправность (доступность) и наличия в нем свободных каналов, достаточных для удовлетворения запроса. Если булева переменная Kont1 равна 1, транзакт пропускается и занимает МКУ Sist. Но перед этим вычисляется и заносится целое число INT(Emk/Zap) = INT(7/2)=3 в сохраняемую ячейку с именем KolPovt, которое определяет, сколько транзактов может одновременно находится в МКУ.
После выхода транзакта из блока ENTER начинает работать сегмент учета номеров транзактов, занявших МКУ. Блоком ASSIGN в параметр с именем KolPovt - параметр цикла - заносится число, находящееся в сохраняемой ячейке с именем KolPovt. Далее в цикле, тело которого начинается с блока TEST с меткой Met5 и заканчивается блоком LOOP с меткой Met4, находится свободное место в списке для записи номера транзакта. Свободное место определяется блоком TEST как равенство нулю значения какой-либо одной из трех сохраняемых ячеек Х1, Х2 или Х3 (по числу транзактов, одновременно находящихся в МКУ). Такая ячейка всегда есть и блоком SAVEVALUE в нее записывается номер занявшего МКУ транзакта. А так как сохраняемых ячеек, значения которых равны нулю, может быть несколько (особенно вначале работы модели), после записи номера транзакта осуществл яется выход из цикла.
Транзакт направляется к блоку ADVANCE с меткой Met6 и входит в него. Имитируется обслуживание заявки. После обслуживания транзакт освобождает МКУ Sist, пройдя блокLEAVE.
Начинает работать сегмент учета номеров транзактов, освободивших МКУ. Его работа аналогична рассмотренной ранее работе сегмента учета номеров транзактов, занявших МКУ. Отличие состоит в том, что отыскивается сохраняемая ячейка Х1, Х2 или Х3, которая содержит номер обслуженного транзакта. Найденная ячейка обнуляется, т. е. обслуженный транзакт снимается с учета. Так как номер записывается только в одну ячейку, то после ее обнуления осуществляется выход из цикла, тело которого начинается с блока TEST с меткой Met8 и заканчивается блоком LOOP с меткой Met7.
Теперь рассмотрим работу модели при возникновении неисправности МКУ. Транзакт, инициирующий неисправность, после задержки блоком ADVANCE сегмента имитации неисправностей, входит в блок SUNAVAIL, который переводит МКУ Sist в недоступное (неисправное) состояние.
Далее начинается работа сегмента удаления транзактов из МКУ. Суть ее заключается в следующем. В цикле, также организованном с помощью блока LOOP, просматривается список номеров транзактов, занявших МКУ. Если значение какой-либо сохраняемой ячейки Х1, Х2 или Х3 не равно нулю, значит в ней записан номер транзакта, находящегося в данный момент в МКУ. Блоком DISPLACE этот транзакт перемещается к блоку LEAVE с меткой Met3, освобождает МКУ и выводится из модели.
После удаления из МКУ всех транзактов, транзакт - инициатор неисправности входит в следующий за блоком LOOP с меткой Met11 блок TEST. Так как МКУ Sist пусто (булева переменная Kont2 равна нулю), блок TEST пропускает этот транзакт в блок ADVANCE и начинается имитация восстановления работоспособности МКУ.
Результаты моделирования представлены в табл. 6.4.
Из результатов следует, что обслужены только две заявки (первый и шестой транзакты). Пять заявок не обслужены: пятый тран-закт поступил, когда МКУ было неисправным, а третий и четвертый, седьмой и восьмой транзакты потеряны: в моменты возникновения неисправностей ( t = 7,5 и t =16 соответственно) они находились в МКУ.
Таблица 6.4. Результаты моделирования примера п. 6.8.1 |
|||||||
События |
Транзакты |
||||||
|
1 |
3 |
4 |
5 |
6 |
7 |
8 |
Вход в модель |
2 |
4 |
6 |
8 |
10 |
12 |
14 |
Занятие МКУ |
2 |
4 |
6 |
|
10 |
12 |
14 |
В МКУ транзакты |
1 |
1,3 |
1,3,4 |
|
6 |
6,7 |
6,7,8 |
Удаление |
|
7.5 |
7.5 |
|
|
16 |
16 |
Освобождение МКУ |
7 |
7.5 |
7.5 |
|
15 |
16 |
16 |
Вывод из модели |
7 |
7.5 |
7.5 |
8 |
15 |
16 |
16 |
Коэффициент использования ( Util.) МКУ Sist равен 0,375. Он рассчитывается по формуле:
где - число транзактов, занимавших МКУ за время Т моделирования;
-
число каналов МКУ (емкость);
- число каналов, занимаемых i - м транзактом;
-
промежуток времени, в течение которого
-
м транзактом было занято
каналов,
рассчитывается как
и
-
абсолютное модельное время занятия и
освобождения соответственно
каналов
МКУ.
Для рассматриваемого примера п. 6.8.1 (см. табл. 6.4) имеем:
Таким образом, коэффициент использования МКУ рассчитан с учетом времени занятия его полностью обработанными транзак-тами и временем, затраченным на обработку тех транзактов, обслуживание которых было прервано.
Если в результате моделирования требуется определить коэффициент использования МКУ без учета удаленных из него тран-зактов, т. е. транзактов, обслуживание которых было прервано, пользователь может это сделать самостоятельно. Для этого нужно знать, сколько заявок будет обслужено полностью. Введем в модель следующие строки:
KIsp VARIABLE (Zap#N$Met9#5)/(Emk#16) SAVEVALUE KIsp,V$KIsp
Получим
.