
- •0. Лекция: Введение
- •1. Лекция: Понятие модели и моделирования:
- •1.1. Общее определение модели
- •1.2. Классификация моделей и моделирования
- •1.2.1. Классификация моделей и моделирования по признаку "характер моделируемой стороны объекта"
- •1.2.2. Классификация моделей и моделирования по признаку "характер процессов, протекающих в объекте"
- •1.2.3. Классификация моделей и моделирования по признаку "способ реализации модели"
- •1.3. Этапы моделирования
- •1.4. Адекватность модели
- •1.5. Требования, предъявляемые к моделям
- •2.1. Дискретные марковские процессы
- •2.2. Моделирование по схеме непрерывных марковских процессов
- •2.3. Схема гибели и размножения
- •2.4. Элементы смо, краткая характеристика
- •2.5. Моделирование смо в классе непрерывных марковских процессов
- •2.5.1. Многоканальная смо с отказами
- •2.5.2. Многоканальная смо с ожиданием
- •2.5.3. Одноканальная смо с ограниченной очередью
- •2.5.4. Одноканальная замкнутая смо
- •2.5.5. Одноканальная смо с конечной надежностью
- •2.6. Метод динамики средних. Сущность и содержание метода
- •2.7. Принцип квазирегулярности
- •2.8. Элементарные модели боя
- •2.8.1. Модель высокоорганизованного боя
- •2.8.2. Высокоорганизованный бой с пополнением группировок
- •2.8.3. Высокоорганизованный бой с упреждением ударов
- •2.8.4. Модель боя с неполной информацией
- •2.8.5. Учет запаздывания в переносе и открытии огня
- •3. Лекция: Статистическое моделирование:
- •3.1. Сущность имитационного моделирования
- •3.2. Общая характеристика метода имитационного моделирования
- •3.3. Статистическое моделирование при решении детерминированных задач
- •3.4. Моделирование равномерно распределенной случайной величины
- •3.5. Моделирование случайной величины с произвольным законом распределения
- •3.6. Моделирование единичного события
- •3.7. Моделирование полной группы несовместных событий
- •3.8. Моделирование совместных независимых событий
- •3.8.1. Определение совместных исходов по жребию
- •3.8.2. Последовательная проверка исходов
- •3.9. Моделирование совместных зависимых событий
- •3.10. Классификация случайных процессов
- •3.11. Способы продвижения модельного времени
- •3.12. Модель противоборства двух сторон
- •3.13. Модель противоборства как процесс блуждания по решетке
- •3.14. Типовая схема имитационной модели с продвижением времени по событиям
- •3.15. Имитационная модель системы массового обслуживания
- •4. Лекция: Планирование экспериментов
- •4.1. Сущность и цели планирования эксперимента
- •4.2. Элементы стратегического планирования экспериментов
- •4.3. Стандартные планы
- •4.4. Формальный подход к сокращению общего числа прогонов
- •4.5. Элементы тактического планирования
- •4.6. Точность и количество реализаций модели при определении средних значений параметров
- •4.6.1. Определение оценки матожидания
- •4.6.2. Определение оценки дисперсии
- •4.7. Точность и количество реализаций модели при определении вероятностей исходов
- •4.8. Точность и количество реализаций модели при зависимом ряде данных
- •4.9. Проблема начальных условий
- •5. Лекция: Обработка результатов имитационного эксперимента
- •5.1. Характеристики случайных величин и процессов
- •5.2. Требования к оценкам характеристик
- •5.3. Оценка характеристик случайных величин и процессов
- •5.4. Гистограмма
- •5.4. Элементы дисперсионного анализа. Критерий Фишера
- •5.6. Критерий Вилькоксона
- •5.7. Однофакторный дисперсионный анализ
- •5.8. Выявление несущественных факторов
- •5.9. Сущность корреляционного анализа
- •5.10. Обработка результатов эксперимента на основе регрессии
- •6. Лекция: Моделирование в gpss World
- •6.1. Основы построения и принципы функционирования языка имитационного моделирования
- •6.2. Построение моделей с устройствами
- •6.2.1. Организация поступления транзактов в модель и удаления транзактов из нее
- •6.2.1.1. Поступление транзактов в модель
- •6.2.1.2. Удаление транзактов из модели и завершение моделирования
- •6.2.1.3. Изменение значений параметров транзактов
- •6.2.2. Занятие и освобождение одноканального устройства
- •6.2.3. Имитация обслуживания посредством задержки во времени
- •6.2.4. Проверка состояния одноканального устройства
- •6.2.5. Методы сбора статистики в имитационной модели
- •6.2.5.1. Регистратор очереди
- •6.2.5.1. Статистические таблицы
- •6.2.6. Методы изменения маршрутов движения транзактов в модели
- •6.2.6.1. Блок transfer
- •6.2.6.2. Блок displace
- •6.2.7. Прерывание функционирования одноканального устройства
- •6.2.7.1. Прерывание в приоритетном режиме
- •6.2.7.2. Прерывание в режиме "захвата"
- •6.2.7.3. Проверка состояния одноканального устройства, функционирующего в приоритетном режиме
- •6.2.8. Недоступность одноканального устройства
- •6.2.8.1. Перевод в недоступное состояние и восстановление доступности
- •6.2.8.2. Проверка состояний недоступности и доступности одноканального устройства
- •6.2.9. Сокращение машинного времени и изменение дисциплин обслуживания методом применения списков пользователя
- •6.2.9.1. Ввод транзактов в список пользователя в безусловном режиме
- •6.2.9.2. Вывод транзактов из списка пользователя в условном режиме
- •6.2.10. Построение моделей систем с многоканальными устройствами и переключателями
- •6.2.10.1. Занятие многоканального устройства и его освобождение
- •6.2.10.2. Перевод многоканального устройства в недоступное состояние и восстановление его доступности
- •6.2.10.3. Проверка состояния многоканального устройства
- •6.2.10.4. Моделирование переключателей
- •6.3. Решение прямой и обратной задач в системе моделирования
- •6.3.1. Постановка прямой и обратной задач
- •6.3.2. Решение прямой задачи
- •6.3.2.1. Блок-диаграмма модели
- •6.3.2.2. Программа модели
- •6.3.2.3. Ввод текста программы модели, исправление ошибок и проведение моделирования
- •6.3.3. Решение обратной задачи
- •6.4. Пример построения моделей с оку, мку и списками пользователя
- •6.4.1. Модель процесса изготовления изделий на предприятии. Прямая задача
- •6.4.1.1. Постановка задача
- •6.4.1.2. Исходные данные
- •6.4.1.3. Задание на исследование
- •6.4.1.4. Уяснение задачи на исследование
- •6.4.1.5. Блок-диаграмма модели
- •6.4.1.6. Программа модели
- •6.4.2. Модель процесса изготовления изделий на предприятии. Обратная задача
- •6.4.2.1. Постановка задачи
- •6.4.2.2. Программа модели
- •6.5. Уменьшение числа объектов в модели
- •6.5.1. Постановка задачи
- •6.5.2. Исходные данные
- •6.5.3. Задание на исследование
- •6.5.4. Блок-диаграмма модели
- •6.5.5. Программа модели
- •6.6. Применение матриц, функций и изменение версий модели
- •6.6.1. Постановка задачи бизнес-процесса
- •6.6.2. Уяснение задачи
- •6.6.3. Программа модели
- •6.7. Моделирование неисправностей одноканальных устройств
- •6.7.1. Постановка задачи
- •6.7.2. Исходные данные
- •6.7.3. Задание на исследование
- •6.7.4. Уяснение задачи
- •6.7.5. Программа модели
- •6.8. Моделирование неисправностей многоканальных устройств
- •6.8.1. Постановка задачи
- •6.8.2. Программа модели
- •7. Лекция: Организация компьютерных экспериментов
- •7.1. Дисперсионный анализ (отсеивающий эксперимент). Прямая задача
- •7.2. Регрессионный анализ (оптимизирующий эксперимент). Прямая задача
- •7.3. Дисперсионный анализ (отсеивающий эксперимент). Обратная задача
- •7.3.1. Постановка задачи
- •7.3.2. Исходные данные
- •7.3.3. Задание на исследование
- •7.3.4. Уяснение задачи на исследование
- •7.3.5. Программа модели
- •7.3.6. Проведение экспериментов
- •8. Лекция: Разработка имитационных моделей в виде приложений с интерфейсом
- •8.1. Применение текстовых объектов и потоков данных
- •8.1.1. Блок open
- •8.1.2. Блок close
- •8.1.3. Блок read
- •8.1.4. Блок write
- •8.1.5. Блок seek
- •8.2. Разработка модели в gpss World
- •8.2.1. Постановка задачи
- •8.2.2. Программа модели
- •8.3. Создание стартовой формы приложения - имитационной модели
- •8.3 Добавление компонент в стартовую форму имитационной модели
- •8.3.1. Добавление полей редактирования
- •8.3.2. Добавление меток
- •8.3.3. Добавление компонент для ввода и вывода данных, представленных в виде таблиц
- •8.3.4. Добавление командных кнопок
- •8.4. События и процедуры обработки событий
- •8.4.1. События
- •8.4.2. Разработка процедур обработки событий для кнопок
- •8.4.3. Разработка процедур обработки событий для полей редактирования
- •8.4.4. Модификация программы имитационной модели
- •8.5. Работа с приложением
1.4. Адекватность модели
Итак, мы установили: модель предназначена для замены оригинала при исследованиях, которым подвергать оригинал нельзя или нецелесообразно. Но замена оригинала моделью возможна, если они в достаточной степени похожи или адекватны.
Адекватность означает, достаточно ли хорошо с точки зрения целей исследования результаты, полученные в ходе моделирования, отражают истинное положение дел. Термин происходит от латинского adaequatus - приравненный.
Говорят, что модель адекватна оригиналу, если при ее интерпретации возникает "портрет", в высокой степени сходный с оригиналом.
До тех пор, пока не решен вопрос, правильно ли отображает модель исследуемую систему (то есть адекватна ли она), ценность модели нулевая!
Термин "адекватность" как видно носит весьма расплывчатый смысл. Понятно, что результативность моделирования значительно возрастет, если при построении модели и переносе результатов с модели на систему - оригинал может воспользоваться некоторой теорией, уточняющей идею подобия, связанную с используемой процедурой моделирования.
К сожалению теории, позволяющей оценить, адекватность математической модели и моделируемой системы нет, в отличие от хорошо разработанной теории подобия явлений одной и той же физической природы.
Проверку адекватности проводят на всех этапах построения модели, начиная с самого первого этапа - концептуального анализа. Если описание системы будет составлено не адекватно реальной системе, то и модель, как бы точно она не отображала описание системы, не будет адекватной оригиналу. Здесь сказано "как бы точно", так как имеется в виду, что вообще не существуют математические модели, абсолютно точно отображающие процессы, существующие в реальности.
Если изучение системы проведено качественно и концептуальная модель достаточно точно отражает реальное положение дел, то далее перед разработчиками стоит лишь проблема эквивалентного преобразования одного описания в другое.
Итак, можно говорить об адекватности модели в любой ее форме и оригинала, если:
описание поведения, созданное на каком-либо этапе, достаточно точно совпадает с поведением моделируемой системы в одинаковых ситуациях;
описание убедительно представительно относительно свойств системы, которые должны прогнозироваться с помощью модели.
Предварительно исходный вариант математической модели подвергается следующим проверкам:
все ли существенные параметры включены в модель;
нет ли в модели несущественных параметров;
правильно ли отражены функциональные связи между параметрами;
правильно ли определены ограничения на значения параметров;
не дает ли модель абсурдные ответы, если ее параметры принимают предельные значения;
Такая предварительная оценка адекватности модели позволяет выявить в ней наиболее грубые ошибки.
Но все эти рекомендации носят неформальный, рекомендательный характер. Формальных методов оценки адекватности не существует! Поэтому, в основном, качество модели (и в первую очередь степень ее адекватности системе) зависит от опыта, интуиции, эрудиции разработчика модели и других субъективных факторов.
Окончательное суждение об адекватности модели может дать лишь практика, то есть сравнение модели с оригиналом на основе экспериментов с объектом и моделью. Модель и объект подвергаются одинаковым воздействиям и сравниваются их реакции. Если реакции одинаковы (в пределах допустимой точности), то делается вывод, что модель адекватна оригиналу. Однако надо иметь в виду следующее:
воздействия на объект носят ограниченный характер из-за возможного разрушения объекта, недоступности к элементам системы и т. д.;
воздействия на объект имеют физическую природу (изменение питающих токов и напряжений, температуры, скорости вращения валов и т. д.), а на математическую модель - это числовые аналоги физических воздействий.
Для оценки степени подобия структур объектов (физических или математических) существует понятие изоморфизма (изо - одинаковый, равный, морфе - форма, греч.).
Две системы изоморфны, если существует взаимно однозначное соответствие между элементами и отношениями (связями) этих систем.
Изоморфны, например, множество действительных положительных чисел и множество их логарифмов. Каждому элементу одного множества - числу соответствует значение его логарифма в другом, умножению двух чисел в первом множестве - сложение их логарифмов в другом. C точки зрения пассажира план метрополитена, находящийся в каждом вагоне поезда метро, изоморфен реальному географическому расположению рельсовых путей и станций, хотя для рабочего, ремонтирующего рельсовые пути, этот план естественно не является изоморфным. Фотография является изоморфным отображением реального лица для милиционера, но не является таковым для художника.
При моделировании сложных систем достигнуть такое полное соответствие трудно, да и нецелесообразно. При моделировании абсолютное подобие не имеет места. Стремятся лишь к тому. чтобы модель достаточно хорошо отражала исследуемую сторону функционирования объекта. Модель по сложности может стать аналогичной исследуемой системе и никакого упрощения исследования не будет.
Для оценки подобия в поведении (функционировании) систем существует понятие изофункционализма.
Две системы произвольной, а подчас неизвестной структуры изофункциональны, если при одинаковых воздействиях они проявляют одинаковые реакции. Такое моделирование называется функциональным или кибернетическим и в последние годы получает все большее распространение, например, при моделировании человеческого интеллекта (игра в шахматы, доказательство теорем, распознавание образов и т. д.). Функциональные модели не копируют структуры. Но копируя поведение, исследователи последовательно "подбираются" к познанию структур объектов (человеческого мозга, Солнца, и др.).