
- •0. Лекция: Введение
- •1. Лекция: Понятие модели и моделирования:
- •1.1. Общее определение модели
- •1.2. Классификация моделей и моделирования
- •1.2.1. Классификация моделей и моделирования по признаку "характер моделируемой стороны объекта"
- •1.2.2. Классификация моделей и моделирования по признаку "характер процессов, протекающих в объекте"
- •1.2.3. Классификация моделей и моделирования по признаку "способ реализации модели"
- •1.3. Этапы моделирования
- •1.4. Адекватность модели
- •1.5. Требования, предъявляемые к моделям
- •2.1. Дискретные марковские процессы
- •2.2. Моделирование по схеме непрерывных марковских процессов
- •2.3. Схема гибели и размножения
- •2.4. Элементы смо, краткая характеристика
- •2.5. Моделирование смо в классе непрерывных марковских процессов
- •2.5.1. Многоканальная смо с отказами
- •2.5.2. Многоканальная смо с ожиданием
- •2.5.3. Одноканальная смо с ограниченной очередью
- •2.5.4. Одноканальная замкнутая смо
- •2.5.5. Одноканальная смо с конечной надежностью
- •2.6. Метод динамики средних. Сущность и содержание метода
- •2.7. Принцип квазирегулярности
- •2.8. Элементарные модели боя
- •2.8.1. Модель высокоорганизованного боя
- •2.8.2. Высокоорганизованный бой с пополнением группировок
- •2.8.3. Высокоорганизованный бой с упреждением ударов
- •2.8.4. Модель боя с неполной информацией
- •2.8.5. Учет запаздывания в переносе и открытии огня
- •3. Лекция: Статистическое моделирование:
- •3.1. Сущность имитационного моделирования
- •3.2. Общая характеристика метода имитационного моделирования
- •3.3. Статистическое моделирование при решении детерминированных задач
- •3.4. Моделирование равномерно распределенной случайной величины
- •3.5. Моделирование случайной величины с произвольным законом распределения
- •3.6. Моделирование единичного события
- •3.7. Моделирование полной группы несовместных событий
- •3.8. Моделирование совместных независимых событий
- •3.8.1. Определение совместных исходов по жребию
- •3.8.2. Последовательная проверка исходов
- •3.9. Моделирование совместных зависимых событий
- •3.10. Классификация случайных процессов
- •3.11. Способы продвижения модельного времени
- •3.12. Модель противоборства двух сторон
- •3.13. Модель противоборства как процесс блуждания по решетке
- •3.14. Типовая схема имитационной модели с продвижением времени по событиям
- •3.15. Имитационная модель системы массового обслуживания
- •4. Лекция: Планирование экспериментов
- •4.1. Сущность и цели планирования эксперимента
- •4.2. Элементы стратегического планирования экспериментов
- •4.3. Стандартные планы
- •4.4. Формальный подход к сокращению общего числа прогонов
- •4.5. Элементы тактического планирования
- •4.6. Точность и количество реализаций модели при определении средних значений параметров
- •4.6.1. Определение оценки матожидания
- •4.6.2. Определение оценки дисперсии
- •4.7. Точность и количество реализаций модели при определении вероятностей исходов
- •4.8. Точность и количество реализаций модели при зависимом ряде данных
- •4.9. Проблема начальных условий
- •5. Лекция: Обработка результатов имитационного эксперимента
- •5.1. Характеристики случайных величин и процессов
- •5.2. Требования к оценкам характеристик
- •5.3. Оценка характеристик случайных величин и процессов
- •5.4. Гистограмма
- •5.4. Элементы дисперсионного анализа. Критерий Фишера
- •5.6. Критерий Вилькоксона
- •5.7. Однофакторный дисперсионный анализ
- •5.8. Выявление несущественных факторов
- •5.9. Сущность корреляционного анализа
- •5.10. Обработка результатов эксперимента на основе регрессии
- •6. Лекция: Моделирование в gpss World
- •6.1. Основы построения и принципы функционирования языка имитационного моделирования
- •6.2. Построение моделей с устройствами
- •6.2.1. Организация поступления транзактов в модель и удаления транзактов из нее
- •6.2.1.1. Поступление транзактов в модель
- •6.2.1.2. Удаление транзактов из модели и завершение моделирования
- •6.2.1.3. Изменение значений параметров транзактов
- •6.2.2. Занятие и освобождение одноканального устройства
- •6.2.3. Имитация обслуживания посредством задержки во времени
- •6.2.4. Проверка состояния одноканального устройства
- •6.2.5. Методы сбора статистики в имитационной модели
- •6.2.5.1. Регистратор очереди
- •6.2.5.1. Статистические таблицы
- •6.2.6. Методы изменения маршрутов движения транзактов в модели
- •6.2.6.1. Блок transfer
- •6.2.6.2. Блок displace
- •6.2.7. Прерывание функционирования одноканального устройства
- •6.2.7.1. Прерывание в приоритетном режиме
- •6.2.7.2. Прерывание в режиме "захвата"
- •6.2.7.3. Проверка состояния одноканального устройства, функционирующего в приоритетном режиме
- •6.2.8. Недоступность одноканального устройства
- •6.2.8.1. Перевод в недоступное состояние и восстановление доступности
- •6.2.8.2. Проверка состояний недоступности и доступности одноканального устройства
- •6.2.9. Сокращение машинного времени и изменение дисциплин обслуживания методом применения списков пользователя
- •6.2.9.1. Ввод транзактов в список пользователя в безусловном режиме
- •6.2.9.2. Вывод транзактов из списка пользователя в условном режиме
- •6.2.10. Построение моделей систем с многоканальными устройствами и переключателями
- •6.2.10.1. Занятие многоканального устройства и его освобождение
- •6.2.10.2. Перевод многоканального устройства в недоступное состояние и восстановление его доступности
- •6.2.10.3. Проверка состояния многоканального устройства
- •6.2.10.4. Моделирование переключателей
- •6.3. Решение прямой и обратной задач в системе моделирования
- •6.3.1. Постановка прямой и обратной задач
- •6.3.2. Решение прямой задачи
- •6.3.2.1. Блок-диаграмма модели
- •6.3.2.2. Программа модели
- •6.3.2.3. Ввод текста программы модели, исправление ошибок и проведение моделирования
- •6.3.3. Решение обратной задачи
- •6.4. Пример построения моделей с оку, мку и списками пользователя
- •6.4.1. Модель процесса изготовления изделий на предприятии. Прямая задача
- •6.4.1.1. Постановка задача
- •6.4.1.2. Исходные данные
- •6.4.1.3. Задание на исследование
- •6.4.1.4. Уяснение задачи на исследование
- •6.4.1.5. Блок-диаграмма модели
- •6.4.1.6. Программа модели
- •6.4.2. Модель процесса изготовления изделий на предприятии. Обратная задача
- •6.4.2.1. Постановка задачи
- •6.4.2.2. Программа модели
- •6.5. Уменьшение числа объектов в модели
- •6.5.1. Постановка задачи
- •6.5.2. Исходные данные
- •6.5.3. Задание на исследование
- •6.5.4. Блок-диаграмма модели
- •6.5.5. Программа модели
- •6.6. Применение матриц, функций и изменение версий модели
- •6.6.1. Постановка задачи бизнес-процесса
- •6.6.2. Уяснение задачи
- •6.6.3. Программа модели
- •6.7. Моделирование неисправностей одноканальных устройств
- •6.7.1. Постановка задачи
- •6.7.2. Исходные данные
- •6.7.3. Задание на исследование
- •6.7.4. Уяснение задачи
- •6.7.5. Программа модели
- •6.8. Моделирование неисправностей многоканальных устройств
- •6.8.1. Постановка задачи
- •6.8.2. Программа модели
- •7. Лекция: Организация компьютерных экспериментов
- •7.1. Дисперсионный анализ (отсеивающий эксперимент). Прямая задача
- •7.2. Регрессионный анализ (оптимизирующий эксперимент). Прямая задача
- •7.3. Дисперсионный анализ (отсеивающий эксперимент). Обратная задача
- •7.3.1. Постановка задачи
- •7.3.2. Исходные данные
- •7.3.3. Задание на исследование
- •7.3.4. Уяснение задачи на исследование
- •7.3.5. Программа модели
- •7.3.6. Проведение экспериментов
- •8. Лекция: Разработка имитационных моделей в виде приложений с интерфейсом
- •8.1. Применение текстовых объектов и потоков данных
- •8.1.1. Блок open
- •8.1.2. Блок close
- •8.1.3. Блок read
- •8.1.4. Блок write
- •8.1.5. Блок seek
- •8.2. Разработка модели в gpss World
- •8.2.1. Постановка задачи
- •8.2.2. Программа модели
- •8.3. Создание стартовой формы приложения - имитационной модели
- •8.3 Добавление компонент в стартовую форму имитационной модели
- •8.3.1. Добавление полей редактирования
- •8.3.2. Добавление меток
- •8.3.3. Добавление компонент для ввода и вывода данных, представленных в виде таблиц
- •8.3.4. Добавление командных кнопок
- •8.4. События и процедуры обработки событий
- •8.4.1. События
- •8.4.2. Разработка процедур обработки событий для кнопок
- •8.4.3. Разработка процедур обработки событий для полей редактирования
- •8.4.4. Модификация программы имитационной модели
- •8.5. Работа с приложением
1.2. Классификация моделей и моделирования
Каждая модель создается для конкретной цели и, следовательно, уникальна. Однако наличие общих черт позволяет сгруппировать все их многообразие в отдельные классы, что облегчает их разработку и изучение. В теории рассматривается много признаков классификации и их количество не установилось. Тем не менее, наиболее актуальны следующие признаки классификации:
характер моделируемой стороны объекта;
характер процессов, протекающих в объекте;
способ реализации модели.
1.2.1. Классификация моделей и моделирования по признаку "характер моделируемой стороны объекта"
В соответствии с этим признаком модели могут быть:
функциональными (кибернетическими);
структурными;
информационными.
Функциональные модели отображают только поведение, функцию моделируемого объекта. В этом случае моделируемый объект рассматривается как "черный ящик", имеющий входы и выходы. Физическая сущность объекта, природа протекающих в нем процессов, структура объекта остаются вне внимания исследователя, хотя бы потому, что неизвестны. При функциональном моделировании эксперимент состоит в наблюдении за выходом моделируемого объекта при искусственном или естественном изменении входных воздействий. По этим данным и строится модель поведения в виде некоторой математической функции.
Компьютерная шахматная программа - функциональная модель работы человеческого мозга при игре в шахматы.
Структурное моделирование это создание и исследование модели, структура которой (элементы и связи) подобна структуре моделируемого объекта. Как мы выяснили ранее, подобие устанавливается не вообще, а относительно цели исследования. Поэтому она может быть описана на разных уровнях рассмотрения. Наиболее общее описание структуры - это топологическое описание с помощью теории графов.
Учение войск - структурная модель вида боевых действий.
1.2.2. Классификация моделей и моделирования по признаку "характер процессов, протекающих в объекте"
По этому признаку модели могут быть детерминированными или стохастическими, статическими или динамическими, дискретными или непрерывными или дискретно-непрерывными.
Детерминированные модели отображают процессы, в которых отсутствуют случайные воздействия.
Стохастические модели отображают вероятностные процессы и события.
Статические модели служат для описания состояния объекта в какой-либо момент времени.
Динамические модели отображают поведение объекта во времени.
Дискретные модели отображают поведение систем с дискретными состояниями.
Непрерывные модели представляют системы с непрерывными процессами.
Дискретно-непрерывные модели строятся тогда, когда исследователя интересуют оба эти типа процессов.
Очевидно, конкретная модель может быть стохастической, статической, дискретной или какой-либо другой, в соответствии со связями, показанными на рис. 1.1.
1.2.3. Классификация моделей и моделирования по признаку "способ реализации модели"
Согласно этому признаку модели делятся на два обширных класса:
абстрактные (мысленные) модели;
материальные модели.
Рис. 1.1. Классификация моделей и моделирования
Нередко в практике моделирования присутствуют смешанные, абстрактно-материальные модели.
Абстрактные модели представляют собой определенные конструкции из общепринятых знаков на бумаге или другом материальном носителе или в виде компьютерной программы.
Абстрактные модели, не вдаваясь в излишнюю детализацию, можно разделить на:
символические;
математические.
Символическая модель - это логический объект, замещающий реальный процесс и выражающий основные свойства его отношений с помощью определенной системы знаков или символов. Это либо слова естественного языка, либо слова соответствующего тезауруса, графики, диаграммы и т. п.
Символическая модель может иметь самостоятельное значение, но, как правило, ее построение является начальным этапом любого другого моделирования.
Математическое моделирование - это процесс установления соответствия моделируемому объекту некоторой математической конструкции, называемой математической моделью, и исследование этой модели, позволяющее получить характеристики моделируемого объекта.
Математическое моделирование - главная цель и основное содержание изучаемой дисциплины.
Математические модели могут быть:
аналитическими;
имитационными;
смешанными (аналитико-имитационными).
Аналитические модели - это функциональные соотношения: системы алгебраических, дифференциальных, интегро - дифференциальных уравнений, логических условий. Уравнения Максвелла - аналитическая модель электромагнитного поля. Закон Ома - модель электрической цепи.
Преобразование математических моделей по известным законам и правилам можно рассматривать как эксперименты. Решение на основе аналитических моделей может быть получено в результате однократного просчета безотносительно к конкретным значениям характеристик ("в общем виде"). Это наглядно и удобно для выявления закономерностей. Однако для сложных систем построить аналитическую модель, достаточно полно отражающую реальный процесс, удается не всегда. Тем не менее, есть процессы, например, марковские, актуальность моделирования которых аналитическими моделями доказана практикой.
Имитационное моделирование. Создание вычислительных машин обусловило развитие нового подкласса математических моделей - имитационных.
Имитационное моделирование предполагает представление модели в виде некоторого алгоритма - компьютерной программы, - выполнение которого имитирует последовательность смены состояний в системе и таким образом представляет собой поведение моделируемой системы.
Процесс создания и испытания таких моделей называется имитационным моделированием, а сам алгоритм - имитационной моделью.
В чем заключается отличие имитационных и аналитических моделей?
В случае аналитического моделирования ЭВМ является мощным калькулятором, арифмометром. Аналитическая модель решается на ЭВМ.
В случае же имитационного моделирования имитационная модель - программа - реализуется на ЭВМ.
Имитационные модели достаточно просто учитывают влияние случайных факторов. Для аналитических моделей это серьезная проблема. При наличии случайных факторов необходимые характеристики моделируемых процессов получаются многократными прогонами (реализациями) имитационной модели и дальнейшей статистической обработкой накопленной информации. Поэтому часто имитационное моделирование процессов со случайными факторами называют статистическим моделированием.
Если исследование объекта затруднено использованием только аналитического или имитационного моделирования, то применяют смешанное (комбинированное), аналитико-имитационное моделирование. При построении таких моделей процессы функционирования объекта декомпозируются на составляющие подпроцессы и для которых возможно используют аналитические модели, а для остальных подпроцессов строят имитационные модели.
Материальное моделирование основано на применении моделей, представляющих собой реальные технические конструкции. Это может быть сам объект или его элементы (натурное моделирование). Это может быть специальное устройство - модель, имеющая либо физическое, либо геометрическое подобие оригиналу. Это может быть устройство иной физической природы, чем оригинал, но процессы в котором описываются аналогичными математическими соотношениями. Это так называемое аналоговое моделирование. Такая аналогия наблюдается, например, между колебаниями антенны спутниковой связи под ветровой нагрузкой и колебанием электрического тока в специально подобранной электрической цепи.
Нередко создаются материально-абстрактные модели. Та часть операции, которая не поддается математическому описанию, моделируется материально, остальная - абстрактно. Таковы, например, командно-штабные учения, когда работа штабов представляет собой натурный эксперимент, а действия войск отображаются в документах.
Классификация по рассмотренному признаку - способу реализации модели - показана на рис. 1.2.
Рис. 1.2. Классификация по способу реализации модели