
- •1. Поняття про випадкові подій; неможливі; вірогідні; сумісні; несумісні подій.
- •2. Класичне визначення ймовірності, її властивості. Частість її визначення та відміна від ймовірності.
- •3.Геометричне визначення ймовірності.
- •4.Визначення ймовірності за аксіоматичним підходом.
- •5. Прості та складні випадкові подій. Простір елементарних подій. Математичні операції над подіями.
- •6. Використання елементів комбінаторики у теорії ймовірності.
- •7.Теореми додавання ймовірностей.
- •8. І теорема множення ймовірностей.
- •9. Залежні та незалежні події. Умовна ймовірність.
- •15.Теорема Бернуллі (виведення)
- •16. Поняття моди у експериментах за схемою Бернуллі.
- •22. Функція Гауса її властивості і використання в схемах Бернуллі.
- •23. Функція Лапласа, її властивості і використання в схемі Бернуллі.
- •24. Випадкові величини, види та способи їх опису.
- •25. Функція розподілу ймовірностей для дискретної випадкової величини, її властивості.
- •26. Функція розподілу ймовірностей для неперервної випадкової величини, її властивості
- •27. Закон розподілу дискретної випадкової величини.
- •28. Щільність ймовірностей, її властивості.
- •31. Математичне сподівання та його властивості для дискретної випадкової величини.
- •32. Математичне сподівання та його властивості для неперервної випадкової величини.
- •33.Диспесія та середньо-квадратичне відхилення дискретних випадкових величин.
- •34. Мода і медіана випадкової величини.
- •35. Теоретичні моменти дискретної випадкової величини. Зв'язок з іншими характеристиками.
- •36.Диспесія та середньо-квадратичне відхилення неперервних випадкових величин.
- •38. Імовірна твірна функція та її властивості.
- •39. Біноміальний закон. Числові характеристики.
- •40. Пуассонівський закон. Числові характеристики.
- •41. Гіпергеометричний закон. Числові характеристики.
- •42. Закон рівномірного розподілу на проміжку [a,b].
- •43. Пуассонівський (експоненціальний закон) розподілу неперервної випадкової величини.
- •44. Нормальний закон розподілу неперервної випадкової величини.
- •45. Ймовірність влучення нормально розподіленої величини в заданий інтервал
- •46. Ймовірність заданого відхилення. Правило 3ᵟ
- •47. Композиція неперервних випадкових величин. Стійкість розподілу
- •48.Розподіл Хи-квадрат.
- •49. Розподіл Ст’юдента .
- •50. Розподіл Фішера – Снедекора.
- •51. Система двох дискретних випадкових величин. Числові характеристики двомірної випадкової величини.
- •52. Система двох неперервних випадкових величин. Функції розподілу f(X,y) та її властивості.
- •53. Щільність розподілу системи двох випадкових величин.
- •54. Умовні закони розподілу системи двох випадкових величин. Числові характеристики. (Умовне математичне сподівання).
- •55. Кореляційний момент (коваріація, коефіцієнт кореляції). Властивості cov xy, rxy.
- •56. Нерівність Чебишева.(доведення).
- •57. Теорема Чебишева.(доведення).
- •58. Теорема Бернуллі.(доведення).
- •59. Центральна гранична теорема.
- •60.Генеральна та вибіркова сукупність. Співвідношення чисельних характеристик.
- •61. Статистичний розподіл вибірки. Полігон, гістограмма, емпірична функція.
- •62.Вибіркова середня (арифметична), вибіркова дисперсія, середнє квадратичне відхилення.
- •63. Медіана Ме, Мода Мо*, розмах варіації, коефіцієнт варіації.
- •64. Емпіричні моменти: початковий та центральний.
- •65. Асиметрія та ексцес емпіричного розподілу.
46. Ймовірність заданого відхилення. Правило 3ᵟ
Очевидно, события, состоящие в осуществлении неравенств | X — а|<и ||Х—а|≥, — противоположные. Поэтому, если вероятность осуществления неравенства | X — а| < равна р, то вероятность неравенства |Х—а| равна 1—р.
Преобразуем формулу
Р (| X — а |< ) = 2Ф ( /)
положив = t. В итоге получим
Р (| X — а |< t) = 2Ф (t).
Если t = 3 и, следовательно, t =3 то
Р (| X—а |< 3) = 2Ф (3) = 2 * 0,49865 = 0,9973,
т, е. вероятность того, что отклонение по абсолютной величине будет меньше утроенного среднего квадратического отклонения, равна 0,9973.
Другими словами, вероятность того, что абсолютная величина отклонения превысит утроенное среднее квадратическое отклонение, очень мала, а именно равна 0,0027. Это означает, что лишь в 0,27% случаев так может произойти. Такие события исходя из принципа невозможности маловероятных событий можно считать практически невозможными. В этом и состоит сущность правила трех сигм: если случайная величина распределена нормально, то абсолютная величина ее отклонения от математического ожидания не превосходит утроенного среднего квадратического отклонения.
На практике правило трех сигм применяют так: если распределение изучаемой случайной величины неизвестно, но условие, указанное в приведенном правиле, выполняется, то есть основание предполагать, что изучаемая величина распределена нормально; в противном случае она не распределена нормально.
47. Композиція неперервних випадкових величин. Стійкість розподілу
48.Розподіл Хи-квадрат.
Розглядаємо
послідовність
попарно незалежних випадкових величин,
які розподілені нормально з нульовими
математичними сподіваннями і одиничними
дисперсіями.
Якщо
то ця сума має розподіл
з
ступенями волі.
Щільність розподілу
Числові
характеристики розподілу:
До виразу щільності розподілу входить
гамма-функція
Графік щільності розподілу зображено на рис. 3.3.
Для
розподілу
складено таблиці виду
для кількості ступенів волі від 1 до
30. У таблицях для заданих значень
імовірностей (здебільшого
0,9; 0,8; 0,7; 0,5; 0,3; 0,2; 0,1; 0,05; 0,02; 0,01; 0,005; 0,002;
0,001) вказано значення
для відповідної кількості ступенів
волі. Якщо кількість ступенів волі
більша від 30, то розподіл мало відрізняється
від нормального з відповідними
математичним сподіванням і дисперсією.
M(X)=n. D(X)=2n.
49. Розподіл Ст’юдента .
Розподіл
Стьюдента з n
cтупенями волі має випадкова величина
де Х
— нормально розподілена величина з
нульовим математичним сподіванням і
одиничною дисперсією, а
.
Випадкова величина
не залежить від Х
і має розподіл
з
n
ступенями волі. Щільність розподілу
Графік щільності розподілу Стьюдента
за зовнішнім виглядом нагадує нормальні
криві. Але вони значно повільніше
спадають до осі t,
якщо
особливо
за малих значень n
Складено
таблиці розподілу Стьюдента, здебільшого
виду
для кількості ступенів волі від 1 до
20. Якщо кількість ступенів волі більша,
то можна застосовувати нормальний
закон розподілу з нульовим математичним
сподіванням і одиничною дисперсією.
M(Z)=0.
.