Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Химич.картина мира,л.6.doc
Скачиваний:
4
Добавлен:
18.09.2019
Размер:
105.98 Кб
Скачать

2.Химические основы жизни.

Напомним, что понятие "самоорганизация" означает упорядоченность существования материальных динамических, т. е. качественно изменяющихся систем. В отличие от понятия "организация" оно отражает особенности существования динамических систем, которые сопровождаются их восхождением на все более высокие уровни сложности и системной упорядоченности, или материальной организации.

Существуют два подхода к проблеме самоорганизации предбиологических систем, которые все чаще обсуждаются в естественнонаучной и философской литературе:

-субстратный;

-функциональный.

К субстратному подходу относят теорию происхождения жизни с вполне определенными особенностями вещественной основы биологических систем, т. е. со строго определенным составом элементов-органогенов и не менее определенной структурой входящих в живой организм химических соединений. Рациональный результат субстратного подхода к проблеме биогенеза - накопленная информация об отборе химических элементов и структур.

В настоящее время известно более ста химических элементов. Большинство из них попадает в те или иные живые организмы и, так или иначе, участвует в их жизнедеятельности.

Основу живых систем составляют только шесть элементов, давно получивших наименование органогенов: углерод, водород, кислород, азот, фосфор и сера (их общая весовая доля в организмах составляет 97,4%).

За ними следуют 12 элементов, входящих в состав многих физиологически важных компонентов биосистем: натрий, калий, кальций, магний, железо, кремний, алюминий, хлор, медь, цинк, кобальт (их весовая доля в организмах примерно 1,6%).

Можно назвать еще 20 элементов, участвующих в построении и функционировании отдельных узкоспецифических биосистем (например, водорослей, состав которых определяется в известной мере питательной средой). Их доля в организмах составляет около 1%. Участие всех остальных элементов в построении биосистем практически не зафиксировано.

Картина химического мира весьма отчетливо свидетельствует об отборе элементов. К настоящему времени известно около 8 млн. химических соединений. Из них подавляющее большинство (около 96%) - органические соединения, основной строительный материал которых - все те же 6-18 элементов. И как ни парадоксально, из всех остальных 95- 99 химических элементов природа (по крайней мере, на Земле) создала лишь около 300 тыс. неорганических соединений.

Столь резкая диспропорция между едва обозримым множеством органических соединений и каким-то минимумом составляющих их органогенов так же, как и исключительно дифференцированный отбор того же минимума элементов для построения живых систем, нельзя всецело объяснить факторами различной распространенности элементов в космосе и на Земле. В космосе наиболее широко распространены лишь два элемента - водород и гелий, все остальные элементы можно рассматривать только как дополнение к ним.

На Земле наиболее распространены: железо, кислород, кремнии, магний, алюминий, кальций, натрий, калий, никель, тогда как углерод занимает лишь 16-е место. В атмосфере Земли углерода не более 0,01 весового процента, в океанах - около 0,002, в литосфере - 0,1. Углерод в литосфере Земли распространен в 276 раз меньше, чем кремний, в 88 раз меньше, чем алюминий, и даже в 6 раз меньше, чем относительно редкий титан. Из органогенов наиболее распространены лишь кислород и водород. Распространенность же углерода, азота, фосфора и серы в поверхностных слоях Земли примерно одинакова и, в общем, невелика - всего около 0,24 весовых процента. Следовательно, геохимические условия не играют сколько-нибудь существенной роли в отборе химических элементов при формировании органических систем, а тем более биосистем. Определяющими факторами здесь выступают требования соответствия между строительным материалом и объектами с высокоорганизованной структурой.

С химической точки зрения такие требования сводятся к отбору элементов, способных к образованию, во-первых, достаточно прочных и, следовательно, энергоемких химических связей и, во-вторых, связей лабильных, т. е. легко подвергающихся гомолизу, гетеролизу или циклическому перераспределению. Вот почему углерод выделен из многих других элементов как органоген № 1:

- этот элемент отвечает всем требованиям химической лабильности;

- он, как никакой другой элемент, способен вмещать и удерживать внутри себя самые редкие химические противоположности, реализовать их единство, выступать в качестве носителя внутреннего противоречия;

- атомы углерода в одном и том же соединении способны выполнять роль и акцептора, и донора электронов. Они образуют почти все типы связей, какие знает химия.

Подобно тому, как из всех химических элементов только шесть органогенов да 10-15 других элементов отобраны природой, чтобы составить основу биосистем, так же в результате эволюции шел тщательный отбор и химических соединений. Из миллионов органических соединений в построении живого организма участвуют лишь несколько сотен; из 100 известных аминокислот в состав белков входит только 20; лишь по четыре нуклеотида ДНК и РНК лежат в основе всех сложных полимерных нуклеиновых кислот, ответственных за наследственность и регуляцию белкового синтеза в любых живых организмах. Удивительно, что из такого узкого круга отобранных природой органических веществ составлен трудно обозримый, многообразный мир животных и растений. Полагают, что когда период химической подготовки - период интенсивных и разнообразных превращений сменился периодом биологической эволюции, химическая эволюция словно застыла. Теперь находят массу доказательств того, что аминокислотный состав гемоглобина самых низших позвоночных и человека практически один и тот же; более или менее одинаковыми остаются у разных видов растений состав ферментативных средств, состав веществ, накапливаемых впрок, и т. д.

Каким образом проводилась та химическая подготовка, в результате которой из минимума химических элементов и минимума химических соединений образовался сложнейший высокоорганизованный комплекс - биосистема? Химику важно это понять для того, чтобы научиться у природы так легко и просто приспосабливать для своих нужд «менее организованные материалы», например: синтезировать сахар, получать стереоспецифические соединения и т. п.

В ходе эволюции отбирались те структуры, которые способствовали резкому повышению активности и селективности действия каталитических групп. К примеру, фрагмент эволюционных систем - развитая полимерная структура типа РНК и ДНК, выполняющая важные функции передачи наследственной информации.

Заслуживает внимания ряд выводов, полученных самыми различными путями и в различных областях науки (геологии, геохимии, космохимии, биохимии, термодинамике, химической кинетике). На ранних стадиях химической эволюции мира катализ вообще отсутствовал. Условия высоких температур (выше 5000°К), электрических разрядов и радиации препятствовали образованию конденсированного состояния. Первые проявления катализа начинались при смягчении условий (при температуре ниже 5000° К) и образовании первичных твердых тел. Роль катализатора возрастала по мере того, как физические условия (главным образом температура) приближались к земным. Но роль катализа вплоть до образования более или менее сложных органических молекул оставалась несущественной. Появление таких относительно несложных систем, как аминокислоты и первичные сахара, было своеобразной некаталитической подготовкой старта для большого катализа. Роль катализа в развитии химических систем после достижения стартового состояния, т. е. известного количественного минимума органических и неорганических соединений, начала возрастать сравнительно быстро. Отбор активных соединений происходил в природе из тех продуктов, которые получались относительно большим числом химических способов и обладали широким каталитическим спектром.

Отличительная черта второго - функционального подхода – к проблеме предбиологической эволюции состоит в сосредоточении внимания на исследовании процессов самоорганизации материальных систем, на выявлении законов, которым подчиняются такие процессы. Среди естествоиспытателей такого подхода придерживаются преимущественно физики и математики, рассматривающие эволюционные процессы с позиций кибернетики. Крайняя точка зрения - утверждение о полном безразличии к материалу эволюционных систем: живые системы, вплоть до интеллекта, могут быть смоделированы даже из металлических систем.

Вопросы для самоконтроля.

  1. Что изучает химия как наука 

  2. От чего зависят свойства вещества

  3. Какое открытие положило начало формированию научной химической картины мира

  4. Что выражает периодический закон Д.И. Менделеева

  5. Как определяется понятие «химический элемент»

  6. Когда возникла структурная химия

  7. Какие химические процессы исследует эволюционная химия

  8. Каковы химические основы жизни с позиций современной биохимии

  9. Какой химический элемент выделен как органоген № 1 

  10. В чём различие субстратного и функционального подхода к проблеме самоорганизации предбиологических систем

Тестовые задания к данной теме: Хим. картина мира.

~а3 Какие существуют подходы к проблеме самоорганизации предбиологических систем: (два ответа правильны).

-симбиозный подход.

+субстратный подход

+функциональный подход

-эволюционный подход

-классический подход.

~а4

Свойства химического вещества определяется: (два ответа правильны).

+ его молекулярным и элементным составом

+уровнем химической организации вещества

- его окислительными возможностями

- его свойством разлагаться на другие вещества

- все ответы не правильны

~а1

Назовите имя великого ученого впервые доказавшего формирование «химической картины мира»:

+ А.М. Бутлеров

- Ю. Либих

- Л. Пастер

- Д.И. Менделеев

- В.И. Вернадский

~а2

Какие шесть основных химических элементов–органогенов составляют основу живых систем организма:

- алюминий, хлор, медь, натрий, калий, уран.

+ сера, углерод, водород, кислород, азот, фосфор.

-железо, марганец, ртуть, висмут, кобальт, цезий.

-все ответы правильны.

- в природе не существуют таких элементов.

~а4

В космосе наиболее широко распространены лишь два химических элемента. Назовите их:

- кислород и калий.

- медь и цинк.

-метан и железо.

+водород и газ-гелий.

- в космосе не существует вообще химических элементов.

~а2

Какой химический элемент выделен как органоген №1:

- кислород.

-водород.

-калий.

+углерод

-все ответы не правильны.

~а2

История развития химической науки начинается:

-с структурной химии.

-с динамической биохимии.

-с биогенохимии.

+ с алхимии.

-с геохимии.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]