Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ро.docx
Скачиваний:
2
Добавлен:
17.09.2019
Размер:
225.49 Кб
Скачать

15.Донорно-акцепторная химическая связь

Донорно-акцепторный механизм (иначе координационный механизм) — способ образования ковалентной химической связи между двумя атомами или группой атомов, осуществляемый за счет неподеленной пары электронов атома-донора и свободной орбитали атома-акцептора.

Термины «донорно-акцепторная связь» или «координационная связь» некорректны, поскольку это не есть вид химической связи, а лишь теоретическая модель, описывающая особенность её образования. Свойства ковалентной химической связи, образованной по донорно-акцепторному механизму, ничем не отличаются от свойств связей, образованных по обменному механизму (например, связи N—H в ионе аммония NH4+ или связи O—H в ионе гидроксония Н3O+).

Донорами обычно выступают атомы азотакислородафосфорасеры и др., имеющие неподелённые электронные пары на валентных орбиталях малого размера. Роль акцептора могут выполнять ионизированный атом водорода H+, некоторые p-металлы(напр., алюминий при образовании иона AlH4-) и, в особенности, d-элементы, имеющие незаполненные энергетические ячейки в валентном электронном слое.

Именно с позиций донорно-акцепторного механизма описывается образование локализованных ковалентных связей в молекулах и молекулярных ионах комплексных (координационных) соединений: связь формируется за счёт неподелённой пары электронов лиганда и свободной орбитали атома-комплексообразователя. Донорно-акцепторный механизм также описывает образование промежуточных продуктов (интермедиатов) реакции, например,комплексов с переносом заряда.

Модель донорно-акцепторного механизма существует только в рамках представлений о валентности как о локализацииэлектронной плотности при образовании ковалентных связей (метод валентных схем). В рамках метода молекулярных орбиталейнеобходимости в подобных представлениях нет.

16.Что такое химическое равновесие реакции

Химическое равновесие — состояние химической системы, в котором обратимо протекает одна или несколько химических реакций, причём скорости в каждой паре прямая-обратная реакция равны между собой. Для системы, находящейся в химическом равновесии, концентрации реагентовтемпература и другие параметры системы не изменяются со временем.[1]

А2 + В2 ⇄ 2AB

Положение химического равновесия зависит от следующих параметров реакции: температурыдавления и концентрации. Влияние, которое оказывают эти факторы на химическую реакцию, подчиняются закономерности, которая была высказана в общем виде в 1885 году французским ученым Ле-Шателье.

Факторы влияющие на химическое равновесие:

1) температура

При увеличении температуры химическое равновесие смещается в сторону эндотермической (поглощение) реакции, а при понижении в сторону экзотермической (выделение) реакции.

CaCO3=CaO+CO2 -Q t↑ →, t↓ ←

N2+3H2↔2NH3 +Q t↑ ←, t↓ →

2) давление

При увеличении давления химическое равновесие смещается в сторону меньшего объёма веществ, а при понижении в сторону большего объёма. Этот принцип действует только на газы, т.е. если в реакции участвуют твердые вещества, то они в расчет не берутся.

CaCO3=CaO+CO2 P↑ ←, P↓ →

1моль=1моль+1моль

3) концентрация исходных веществ и продуктов реакции

При увеличении концентрации одного из исходных веществ химическое равновесие смещается в сторону продуктов реакции, а при увеличении концентрации продуктов реакции-в сторону исходных веществ.

S2+2O2=2SO2 [S],[O]↑ →, [SO2]↑ ←

Катализаторы не влияют на смещение химического равновесия

18. Химическая связь — явление взаимодействия атомов, обусловленное перекрыванием электронных облаков связывающихся частиц, которое сопровождается уменьшением полной энергии системы.

При образовании ковалентной химической связи важную роль в уменьшении полной энергии играет обменное взаимодействие.

19. Гидролиз солей — разновидность реакций гидролиза, обусловленного протеканием реакций ионного обмена в растворах (преимущественно, водных) растворимых солей-электролитов. Движущей силой процесса является взаимодействие ионов с водой, приводящее к образованию слабого электролита в ионном или (реже) молекулярном виде («связывание ионов»).

Различают обратимый и необратимый гидролиз солей[1]:

  • 1. Гидролиз соли слабой кислоты и сильного основания (гидролиз по аниону):

(раствор имеет слабощелочную среду, реакция протекает обратимо, гидролиз по второй ступени протекает в ничтожной степени)

  • 2. Гидролиз соли сильной кислоты и слабого основания (гидролиз по катиону):

(раствор имеет слабокислую среду, реакция протекает обратимо, гидролиз по второй ступени протекает в ничтожной степени)

  • 3. Гидролиз соли слабой кислоты и слабого основания:

(равновесие смещено в сторону продуктов, гидролиз протекает практически полностью, так как оба продукта реакции уходят из зоны реакции в виде осадка или газа).

Соль сильной кислоты и сильного основания не подвергается гидролизу, и раствор нейтрален

20. Химические реакции, которые протекают со сравнимыми скоростями в обоих направлениях, называются обратимыми. В таких реакциях образуются равновесные смеси реагентов и продуктов, состав которых далее уже не меняется со временем. Например, при нагревании происходят следующие превращения:

21Полимеры (греч. πολύ- — много; μέρος — часть) — неорганические и органические, аморфные и кристаллические вещества, состоящие из «мономерных звеньев», соединённых в длинные макромолекулы химическими или координационными связями. Полимер — это высокомолекулярное соединение: количество мономерных звеньев в полимере (степень полимеризации) должно быть достаточно велико. Во многих случаях количество звеньев может считаться достаточным, чтобы отнести молекулу к полимерам, если при добавлении очередного мономерного звена молекулярные свойства не изменяются. Как правило, полимеры — вещества с молекулярной массой от нескольких тысяч до нескольких миллионов.

Пластма́ссы (пласти́ческие ма́ссы) или пла́стики — органические материалы, основой которых являются синтетические или природныевысокомолекулярные соединения (полимеры). Исключительно широкое применение получили пластмассы на основе синтетических полимеров.

Название «пластмассы» означает, что эти материалы под действием нагревания и давления способны формироваться и сохранять после охлаждения или отвердения заданную форму. Процесс формования сопровождается переходом пластически деформируемого (вязкотекучего) состояния встеклообразное состояние.

22. Корро́зия (от лат. corrosio — разъедание) — это самопроизвольное разрушение металлов в результате химического или физико-химического взаимодействия с окружающей средой. В общем случае это разрушение любого материала, будь то металл или керамикадерево или полимер. Причиной коррозии служит термодинамическая неустойчивость конструкционных материалов к воздействию веществ, находящихся в контактирующей с ними среде. Пример — кислородная коррозия железа в воде: 4Fe + 6Н2О + ЗО2 = 4Fe(OH)3. Гидратированный оксид железа Fe(OН)3 и является тем, что называют ржавчиной.

В повседневной жизни для сплавов железа (сталей) чаще используют термин «ржавление». Менее известны случаи коррозии полимеров. Применительно к ним существует понятие «старение», аналогичное термину «коррозия» для металлов. Например, старение резины из-за взаимодействия с кислородом воздуха или разрушение некоторых пластиков под воздействием атмосферных осадков, а также биологическая коррозия. Скорость коррозии, как и всякой химической реакции, очень сильно зависит от температуры. Повышение температуры на 100 градусов может увеличить скорость коррозии на несколько порядков.

Виды коррозии

  • Газовая коррозия

  • Атмосферная коррозия

  • Коррозия при неполном погружении

  • Коррозия по ватерлинии

  • Коррозия при полном погружении

  • Коррозия при переменном погружении

  • Подземная коррозия

  • Биокоррозия

  • Коррозия внешним током

  • Коррозия блуждающим током

  • Контактная коррозия

  • Коррозия при трении

  • Фреттинг-коррозия

  • Сплошная коррозия

  • Равномерная коррозия

  • Неравномерная коррозия

  • Местная коррозия

Идеальная защита от коррозии на 80 % обеспечивается правильной подготовкой поверхности, и только на 20 % качеством используемых лакокрасочных материа­лов и способом их нанесения.[3]. Наиболее производительным и эффективным методом подготовки поверхности перед дальнейшей защитой субстрата является абразивоструйная очистка[4].

Обычно выделяют три направления методов защиты от коррозии:

  1. Конструкционный

  2. Активный

  3. Пассивный

Для предотвращения коррозии в качестве конструкционных материалов применяют нержавеющие сталикортеновские сталицветные металлы. При проектировании конструкции стараются максимально изолировать от попадания коррозионной среды, применяя клеи, герметики, резиновые прокладки.

Активные методы борьбы с коррозией направлены на изменение структуры двойного электрического слоя. Применяется наложение постоянного электрического поля с помощью источника постоянного тока, напряжение выбирается с целью повышения электродного потенциала защищаемого металла. Другой метод — использование жертвенного анода, более активного материала, который будет разрушаться, предохраняя защищаемое изделие.

23. Квантовые числа — энергетические параметры, определяющие состояние электрона и тип атомной орбитали, на которой он находится.

  1. Главное квaнтовое число n определяет общую энергию электрона и степень его удаления от ядра (номер энергетического уровня); оно принимает любые целочисленные значения, начиная с 1 (n = 1, 2, 3, . . .)

  2. Орбитальное (побочное или азимутальное) квантовое число l определяет форму атомной орбитали. Оно может принимать целочисленные значения от 0 до n-1(l = 0, 1, 2, 3,..., n-1). Каждому значению l соответствует орбиталь особой формы. Орбитали с l = 0 называются s-орбиталями,  l = 1 – р-орбиталями (3 типа, отличающихся магнитным квантовым числом m),  l = 2 – d-орбиталями (5 типов),  l = 3 – f-орбиталями (7 типов).

  3. Магнитное квантовое число m определяет ориентацию орбитали в пространстве относительно внешнего магнитного или электрического поля. Его значения изменяются от +l до -l, включая 0. Например, при l = 1 число m принимает 3 значения: +1, 0, -1, поэтому существуют 3 типа  р-АО:  рx,  рy,  рz.

  4. Спиновое квантовое число s может принимать лишь два возможных значения +1/2 и -1/2. Они соответствуют двум возможным и противоположным друг другу направлениям собственного магнитного момента электрона, называемого спином (от англ. веретено). Для обозначения электронов с различными спинами используются символы:   и  .

24. Твердые вещества, как правило, имеют кристаллическое строение. Оно характеризуется правильным расположением частиц в строго определенных точках пространства. При мысленном соединении этих точек пересекающимися прямыми линиями образуется пространственный каркас, который называют кристаллической решеткой.

Точки, в которых размещены частицы, называются узлами кристаллической решетки. В узлах воображаемой решетки могут находиться ионы, атомы или молекулы. Они совершают колебательные движения. С повышением температуры амплитуда колебаний возрастает, что проявляется в тепловом расширении тел.

В зависимости от вида частиц и характера связи между ними различают четыре типа кристаллических решеток: ионные, атомные, молекулярные и металлические.

Кристаллические решетки, состоящие из ионов, называются ионными. Их образуют вещества с ионной связью. Примером может служит кристалл хлорида натрия, в котором, как уже отмечалось, каждый ион натрия окружен шестью хлорид-ионами, а каждый хлорид-ион - шестью ионами натрия. Такому расположению соответствует наиболее плотная упаковка, если ионы представить в виде шаров, размещенных в кристалле . Очень часто кристаллические решетки изображают, как показано на рис , где указывается только взаимное расположение частиц, но не их размеры.

Физические свойства являются те, которые можно наблюдать без изменения идентичности вещества. Общие свойства материи, такие как цвет, плотность, твердость, примеры физических свойств. Свойства, которые описывают, как вещество превращается в совершенно разные вещества, называются химическими свойствами. Горючесть и коррозии / окислению являются примерами химических свойств.

Разница между физико-химическое свойство прост до этапа материал считается.При существенных изменениях из твердого в жидкое, чтобы пара кажется им стать разница вещества. Однако, когда материал плавится, затвердевает, испаряется, конденсируется или возгоняется, только состояние вещества изменений.Рассмотрим лед, жидкая вода и водяной пар, все они просто H 2 O. Фаза является физическое свойство материи и материи не может существовать в четырех фаз - твердого, жидкого, газа и плазмы