Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
билеты бжд.docx
Скачиваний:
6
Добавлен:
17.09.2019
Размер:
1.06 Mб
Скачать

19.2Жизнедеятельность человека сопровождается непрерывным выделением теплоты в окружающую среду.

Количество её зависит от степени физического напряжения и составляет от 85 (в состоянии покоя) до 500 Вт (при тяжелой работе).

Для нормального протекания физиологических процессов, выделяемая организмом теплота должна полностью отводиться в окружающую среду.

Нарушение теплового баланса может привести к перегреву либо к переохлаждению организма и, как следствие, к потере трудоспособности, быстрому утомлению, потере сознания и тепловой смерти.

Одним из важных интегральных показателей теплового состояния организма является средняя температура тела около 36,5 °С.

Она зависит от степени нарушения теплового баланса и уровня энергозатрат при выполнении физической работы.

При выполнении работы средней тяжести и тяжелой при высокой температуре воздуха она может повышаться от нескольких десятых градуса до 1...2 °С.

Наивысшая температура внутренних органов, которую выдерживает человек, составляет 43 °С, минимальная − 25 °С.

Температурный режим кожи играет основную роль в теплоотдаче.

Ее температура меняется в довольно значительных пределах и под одеждой составляет 30...34 °С.

При неблагоприятных метеорологических условиях на отдельных участках тела температура может понижаться до 20 °С, а иногда и ниже.

Нормальное тепловое самочувствие имеет место, когда тепловыделение Qm человека полностью воспринимается окружающей средой Ото, т. е. когда имеет место тепловой баланс Qm = Ото.

В этом случае температура внутренних органов остается постоянной.

Если теплопродукция организма не может быть полностью передана окружающей среде (Qm > Ото), происходит рост температуры внутренних органов, и такое тепловое самочувствие характеризуется понятием «жарко».

Если окружающая среда воспринимает больше теплоты, чем ее воспроизводит человек (Qm < Ото), то происходит охлаждение организма.

Такое тепловое самочувствие характеризуется понятием «холодно».

Теплообмен между человеком и окружающей средой осуществляется конвекцией Qк в результате омывания тела воздухом, излучением на окружающие поверхности Qп и в процессе тепломассообмена Qтм при испарении влаги, выводимой на поверхность кожи потовыми железами и при дыхании.

Нормальное состояние человека реализуется при соблюдении равенства

Количество теплоты, отдаваемое организмом человека различными путями, зависит от того или иного параметра микроклимата.

Так, величина и направление конвективного теплообмена человека с окружающей средой определяется в основном температурой окружающей среды, атмосферным давлением, подвижностью и влагосодержанием воздуха.

Излучение теплоты происходите в направлении окружающих человека поверхностей, имеющих более низкую температуру, чем температура поверхности одежды и открытых частей тела человека.

При высоких температурах окружающих поверхностей (свыше 30 °С) теплоотдача излучением полностью прекращается, а при более высоких температурах теплоотдача излучением идет в обратном направлении − от горячих поверхностей к человеку.

Отдача теплоты при испарении влаги, выводимой на поверхность кожи потовыми железами, зависит от температуры воздуха, интенсивности работы, выполняемой человеком, от скорости движения окружающего воздуха и его относительной влажности.

Температура, скорость, относительная влажность и атмосферное давление окружающего воздуха получили название параметры микроклимата.

Температура окружающих предметов и интенсивность физической нагрузки организма ха характеризуют конкретную производственную обстановку.

Одной из наиболее адекватных, хотя и сравнительно сложных методик гигиенической оценки микроклимата является непосредственный расчет прямого показателя тепловой нагрузки на организм по основному уравнению теплового баланса.

В основном уравнении теплового баланса учтены главные факторы, оказывающие влияние на изменение содержание тепла в организме человека:

где Q − тепловая нагрузка на организм (накопление или дефицит тепла);

М − теплопродукция (метаболическое тепло, составляющее 67−75% от энергозатрат);

С− конвекционный обмен организма и окружающего воздуха;

R− радиационный теплообмен организма с окружающей средой;

Е− отдача тепла организма испарением.

В данной формуле величины R и С могут быть отрицательными, если теплоотдача происходит путем радиации и конвекции, или положительными, если в результате теплообмена организм получает тепло этими путями, что определяется различием между температурой кожи и температурой окружающих поверхностей (для R) или температурой кожи и температурой воздуха (для С).

При температуре воздуха и окружающих поверхностей 32 − 35 °С теплоотдача путем конвекции и излучения резко сокращается, при этом ведущее место в теплоотдаче занимает испарение (преимущественно пота).

При дальнейшем повышении температуры воздуха и окружающих поверхностей организм начинает получать дополнительное тепло за счет конвекции и радиации, при этом потоотделение еще более возрастает.

В комфортных условиях на теплоотдачу путем конвекции и радиации приходится 65 − 80% всей теплоотдачи организма.

При низких температурах теплоотдача путем конвекции и радиации значительно возрастает.

Тепловой баланс может быть нулевым, положительным, отрицательным.

Нулевое значение Q связано с сохранением теплового равновесия между теплопродукцией и теплоотдачей.

При положительной или отрицательной тепловой нагрузке (накопление или дефицит тепла) говорят о напряжении процессов терморегуляции, а при величинах, превышающих допустимые, − о возможности развития перегрева или переохлаждения.

В соответствии с Р 2.2.755 – 99 «Гигиенические критерии оценки и классификация условий труда по показателям вредности и опасности факторов производственной среды, тяжести и напряженности трудового процесса.» для оценки нагревающего микроклимата в помещении независимо от периода года используется интегральный показатель − тепловая нагрузка среды ( ТНС−индекс).

ТНС– индекс рассчитывают по уравнению

где Твл – температура мокрого термометра аспирационного психрометра, оС;

Тш – температура шарового термометра, оС.

ТНС – индекс – эмпирический интегральный показатель (выраженный в °С), отражающий сочетанное влияние температуры воздуха, скорости его движения, влажности и теплового облучения на теплообмен человека с окружающей средой.

19.3Федеральный закон РФ от 21.12.1994 г. № 69-ФЗ «О пожарной безопасности» в редакции Федерального закона РФ от 27.12.1995 г. № 211-Ф.

2. Правила пожарной безопасности в Российской Федерации ППБ 01-03. Введены в действие Приказом Министерства Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий от 18.06.2003 г. № 313.

3. Государственные стандарты системы стандартов безопасности труда (ССБТ), строительные нормы и правила (СНиП, нормы пожарной безопасности (НПБ) и др.

В соответствии с Федеральным законом «О пожарной безопасности» (ст. 2) субъекты РФ вправе разрабатывать и утверждать в пределах своей компетенции нормативные документы по пожарной безопасности, не снижающие требований пожарной безопасности, установленных федеральными нормативными правовыми актами.

Нормативное правовое регулирование в области пожарной безопасности осуществляется через нормативные правовые акты, а нормативное регулирование - через нормативные документы.

Согласно ст. 20 Федерального закона к нормативным документам по пожарной безопасности относятся стандарты, нормы и правила пожарной безопасности, инструкции и иные документы, содержащие требования пожарной безопасности.

Нормативные документы по стандартизации, которые принимаются федеральными органами исполнительной власти и устанавливают или должны устанавливать требования пожарной безопасности, подлежат обязательному согласованию с Государственной противопожарной службой. Порядок разработки, введения в действие и применения других нормативных документов по пожарной безопасности устанавливается Государственной противопожарной службой. Разработка инструкций о мерах пожарной безопасности

В соответствии с Правилами пожарной безопасности необходимо иметь следующие инструкции:

— общеобъектовую, цеховую для участков или помещений о мерах пожарной безопасности и действиях в случае возникновения пожара;

— по техническому содержанию и эксплуатации противопожарной автоматики;

— о совместном хранении пожароопасных химических веществ и материалов;

— о действиях охраны предприятия в случае возникновения пожара и др.

Общеобъектовые и цеховые инструкции по обеспечению пожарной безопасности должны быть разработаны с учетом требований ГОСТ 12.1.004-91 «ССБТ. Пожарная безопасность. Общие требования», Правил ППБ 01—03, строительных норм и правил, и других нормативных документов, содержащих требования пожарной безопасности, исходя из специфики пожарной опасности зданий, сооружений, технологических процессов и производственного оборудования.

19.4 ВЕЩЕСТВА ТОКСИЧНЫЕ — вещества, способные при воздействии на живые организмы приводить к их гибели при следующих концентрациях: средняя смертельная доза при введении в желудок от 15 мг/кг до 200 мг/кг включительно; средняя смертельная доза при нанесении на кожу от 50 мг/кг до 400 мг/кг включительно; средняя смертельная концентрация в воздухе от 0,5 мг/л до 2 мг/л включительно.

19.5 изоляции путем тока на землю (рис. 3.13). Для упрощения анализа можно принять их равными, т. е. d = Св= Сси ГА = ГВ = ГС= г.

Рис. 3.13. Опасность трехфазных электрических цепей с изолированной нейтралью

Опасность трехфазных электрических сетей с заземленной нейтралью. Трехфазные сети с заземленной нейтралью обладают малым сопротивлением между нейтралью и землей (практически оно равно сопротивлению рабочего заземления нулевой точки трансформатора или генератора) (рис. 3.14). Напряжение любой фазы исправной сети относительно земли равно фазному напряжению, и ток через человека, прикоснувшегося к одной из фаз (рис. 3.14, а), определится выражением:

Рис. 3.14. Опасность трехфазных электрических цепей с заземленной нейтралью

Анализируя различные случаи прикосновения человека к проводам трехфазных электрических сетей, можно сделать следующие выводы:

Опасность трехфазных электрических цепей с изолированной нейтралью.

Рис. 3.13. Опасность трехфазных электрических цепей с изолированной нейтралью

Опасность трехфазных электрических сетей с заземленной нейтралью.

Рис. 3.14. Опасность трехфазных электрических цепей с заземленной нейтралью

Опасность трехфазных электрических сетей с изолированной нейтралью. Провода электрических сетей по отношению к земле имеют емкость и активное сопротивление — сопротивление утечки, равное сумме сопротивлений изоляции и пути тока на землю (рис 5.10). 248

Рис. 5.11. Схема зануления в трехфазной четырехпроводной сети с заземленной нейтралью:

Установленная мощность электрооборудования азотной установки 100 кВт. Электропитание ее осуществляется от трехфазной четырехпроводной сети напряжением 220 В от постороннего источника электроэнергии. Подключение осуществляется гибким четырехжильным кабелем, входящим в комплект установки.

Таким образом, если человек прикоснется к одной из фаз трехфазной четырехпроводной сети с глухозаземленной нейтралью, го он окажется практически под фазным напряжением (Кз^Кч), и сила проходящего через него тока при нормальной работе сети практически не изменится с изменением сопротивления изоляции и емкости проводов относительно земли.

В трехфазной четырехпроводной системе (см. рис. 7) нейтраль вторичной обмотки трансформатора наглухо заземлена, а в системах с незаземленной нейтралью (см. рис. 8) она соединена с пробивным предохранителем (ПП), другой конец которого наглухо заземлен.

В работе [5] подробно рассмотрены случаи прохождения тока через тело человека: в трехфазной трехпроводной сети с изолированной нейтралью при нормальной работе сети, при аварийном режиме; в трехфазной четырехпроводной сети с заземленной нейтралью при нормальном режиме работы сети и в аварийном режиме.

В трехфазной четырехпроводной сети четвертый проводник,присоединенный к нейтрали источника питания и используемый в цепи питания электроприемников, называется нулевым рабочим проводником. Одновременно он может выполнять также функцию нулевого защитного проводника.

Подставив это значение в (4-7), получим искомое уравнение напряжения в комплексной форме, приложенное к телу человека, прикоснувшегося к фазе 1 трехфазной четырехпроводной сети с нейтралью, заземленной через активное и реактивное сопротивления, В,

Согласно требованиям Правил устройства электроустановок г0 не должно превышать 10 Ом; сопротивление же тела человека /?л не: опускается ниже нескольких сотен ом. Следовательно, без большой ошибки в (4-11) и (4-12) можно пренебречь значением г0 и считать, что при прикосновении к одной из фаз трехфазной четырехпроводной сети с глухозаэемленной нейтралью человек оказывается практически под фазным напряжением ?/ф, а ток, проходящий через него, равен частному от деления U,$ на Rh-

Пример 4-5. Человек прикоснулся к фазному проводу трехфазной четырехпроводной сети 380/220 В с заземленной нейтралью. Определить ток /л, проходяш.1 " через человека. Дано: г„ — 4 Ом; /?л = 1000Ом; /•1=/-2=лз=г„=/-=1 кОм; Ci = C2 = C3=CB = C=0,l мкФ; (*с=32 кОм).

Рис. 4-5. Изменение тока //,, проходящего через человека, при прикосновении к фазному проводу трехфазной четырехпроводной сети с заземленной нейтралью 380/220 В и трехпроводной с изолированной нейтралью 380 В в период нормальной их работы.

Рис. 4-6. Прикосновение человека к фазному проводу трехфазной четырехпроводной сети с заземленной нейтралью при аварийном

Б20.1 Оптические квантовые генераторы (ОКГ, лазеры) - приборы, представляющие собой источник светового излучения совершенно нового типа. В отличие от луча любого известного источника света, несущего в себе электромагнитные волны различной длины, лазерный луч монохроматичен (электромагнитные волны строго одной длины), отличается высокой временной и пространственной когерентностью (все волны генерируются одновременно в одной фазе), узкой направленностью, что обусловливает точную фокусировку в малом объеме. Поэтому плотность мощности лазерного излучения в импульсе может быть огромна.

Имеются различного типа лазеры: твердотельные, где излучателем является твердое тело - рубин, неодим и др., газовые лазеры (гелий-неоновые, аргоновые и др.), жидкостные и полупроводниковые. Лазеры могут работать в непрерывном и импульсном режиме.

Излучение ОКГ характеризуется следующими основными параметрами: длина волны (мкм), мощность (Вт), плотность потока мощности (Вт/см2), энергия излучения (Дж) и угловая расходимость луча (угл. мин).

Сфера применения ОКГ очень широка: в различных областях народного хозяйства, в технике связи (позволяет передавать большое количество информации), в микроэлектронной, часовой промышленности, при сварке, пайке и др., в научных исследованиях, в освоении космоса.

Уникальность лазерного луча - получение большой мощности излучения на очень маленькой площади, полная стерильность - позволяет применять его в хирургии для коагуляции тканей при операциях на сетчатке, в качестве нового исследовательского инструмента в экспериментальной биологии, в цитологии (луч может достигать отдельных органоидов, не повреждая всю клетку), и др.

Все большее число лиц вовлекается в сферу действия лазеров; таким образом, этот вид излучения приобретает значение очень серьезного профессионально-гигиенического фактора.

В производственных условиях наибольшую опасность представляет не прямой световой луч, действие которого возможно только при грубом нарушении правил техники безопасности, а диффузное отражение и рассеяние луча (при визуальном контроле за попаданием луча на мишень, при наблюдении за приборами вблизи хода луча, при отражении от стен и других поверхностей). В особенности опасны зеркально отражающие поверхности. Хотя интенсивность отраженного луча невелика, однако возможно превышение безопасных для глаз уровней энергии. В лабораториях, где работают с импульсными ОКГ, имеются дополнительные неблагоприятные факторы: постоянный (80-00 дБ) и импульсный (до 120 дБ и более) шум, слепящий свет ламп накачки, утомление зрительного анализатора, нервно-эмоциональное напряжение, газовые примеси в воздушной среде - озон, окислы азота; ультрафиолетовое излучение и т. д.

Биологическое действие лазеров

Биологическое действие лазеров обусловлено двумя основными критериями: 1) физической характеристикой лазера (длина волны излучения лазера, непрерывный или импульсный режим облучения, длительность импульса, скорость повторения импульсов, удельная мощность), 2) абсорбционной характеристикой тканей. Свойства самой биологической структуры (поглощающая, отражающая способность) влияют на эффекты биологического действия лазера.

Действие лазера многогранно - электрическое, фотохимическое; основное действие - тепловое. Наиболее опасны лазеры с большой энергией в импульсе.

Прямой световой монохроматический импульс вызывает в здоровой ткани локальный ожог - коагуляцию белков, местный некроз, резко отграниченный от смежной области, асептическое воспаление с последующим развитием соединительнотканного рубца. При интенсивном облучении - расстройства васкуляризации, кровоизлияния в паренхиматозных органах. При повторных облучениях патологический эффект возрастает. Наиболее чувствительны глаз (роговица и хрусталик фокусируют излучение на сетчатке) и кожа, в особенности пигментированная.

Клиника

При прямом попадании лазерного луча в глаз - ожог сетчатки, разрывы ее. Могут быть поражены роговица, радужная оболочка, хрусталик, кожа век. Поражение, как правило, носит необратимый характер.

Для глаз опасно не только прямое, но и рассеянное отраженное излучение от какой-либо поверхности. При длительном воздействии последнего наиболее часто обнаруживаются игольчатые, стреловидные, реже - точечные помутнения хрусталика. На сетчатке - светлые, желтовато-белые, депигментированные очаги. При исследовании функционального состояния зрительного анализатора определяются снижение световой и контрастной чувствительности, увеличение времени восстановления адаптации, изменения световой чувствительности. Характерны жалобы на боли и давление в глазных яблоках, резь в глазах, утомленно глаз к концу рабочего дня, головные боли.

Помимо поражения органа зрения, при работе с ОКГ развивается комплекс неспецифических реакций со стороны различных органов и систем.

Клиника общих нарушений складывается из вегетативной дисфункции с присоединением невротических реакций на астеническом фоне. По мере увеличения профессионального стажа нарастает частота нейроциркуляторной дистонии по гипотоническому или гипертоническому вариантам в зависимости от характера лазерного излучения (непрерывный, импульсный), а также степень невротизации.

Наблюдаются также нарушения функции вестибулярного аппарата как в сторону повышения, так и понижения его возбудимости. Частота этих нарушений тоже возрастает по мере увеличения профессионального стажа.

Из биохимических показателей характерны: повышение уровня аммиака в крови, увеличение активности щелочной фосфатазы и трансфераз, изменение экскреции катехоламинов.

В эксперименте на животных при действии небольших интенсивностей энергии отмечаются изменения мозгового кровотока, сопряженные с изменением системной гемодинамики. Установлено действие лазерной энергии на гипоталамо-гипофизарную систему.

Экспертиза трудоспособности

При развитии функциональных нарушении центральной нервной системы, сердечно-сосудистого аппарата рекомендуются лечение и временный перевод на другую работу; возвращение на работу при улучшении состояния (под врачебным наблюдением) и при условии улучшения условий труда. Поражение глаз является противопоказанием к дальнейшей работе с лазером.

Профилактика

Рациональная организация условий труда лаборатории. Размещение лазера в изолированном помещении. Система сигнализации, обеспечивающая безопасность во время работы лазера. Избегать применения отражающих поверхностей. Пучок лазера должен быть направлен на неотражающий и невоспламеняющийся фон. Окраска стен матовая - в светлых тонах. Экранировка луча (в особенности мощного ОКГ) на протяжении от излучателя до объектива. Категорически запрещается пребывание людей в опасной зоне излучения ОКГ при работе лазера. Запрещается нахождение в лаборатории лиц, не занятых обслуживанием лазера. Эффективная вентиляция. Общее и местное освещение. Строгое соблюдение требований электробезопасности, мер индивидуальной защиты. Применение специально сконструированных защитных очков (для каждой длины волны свой отеческий фильтр). Работа в условиях общего яркого освещения с целью сужения зрачка. При работе с высокими энергиями избегать контакта любой части тела с прямым лучом, рекомендуется ношение черных фетровых или кожаных перчаток. Строгий офтальмологический контроль. Предварительные и периодические медицинские осмотры.