Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
билеты бжд.docx
Скачиваний:
6
Добавлен:
17.09.2019
Размер:
1.06 Mб
Скачать

17.3 Автоматические системы тушения пожара

Сегодня каждое общественное или жилое помещение согласно существующим требованиям и нормативам должно быть оборудовано системой пожарной сигнализации. Сама по себе такая система малоэффективна, так как сохранность имущества и жизни людей при срабатывании сигнализации во многом зависит от скорости и качества работы пожарных служб и расчетов. С недавних пор пожарную сигнализацию на некоторых особо требовательных объектах комплектуют автоматическими решениями пожаротушения.

Автоматические системы тушения пожара включают подачу тушащего огонь состава по сигналам с датчиков огня и дыма. Использование подобных автоматизированных систем остается оправданным лишь в помещениях, в которых содержатся особо ценные материалы и предметы, например в автомастерских, автостоянках, архивах с важными документами и так далее.

Стоимость автоматизированных систем тушения пожара варьируется сейчас в очень широком диапазоне и основным фактором, определяющим их цену, является вид используемого пожаротушащего состава. Существуют системы, основанные на тушении огня с помощью газа (углекислого, фреона, аргона, азота), с помощью подачи воды обычным способом, подачи воды тонкодисперсным методом, порошковым, пенным, аэрозольным методом. Самыми дорогими, но и самыми ограниченными в использовании считаются газовые системы автоматического тушения возгорания. При работе таких систем требуется эвакуацию людей из помещений. Устанавливаются они в основном в библиотеках, архивах, на серверных и в других помещениях, где тушение огня с помощью жидкостей или пены может привести к материальным убыткам. Самыми недорогими, но также требующими эвакуации в процессе работы, считаются пенные системы автоматического пожаротушения.

Самый простой в эксплуатации и обслуживании и наиболее часто используемый вариант системы автоматического тушения пожара – это решение с использованием распылителей для подачи воды. Обычно такие системы актуальны для использования в составе больших по площади помещений, например объектов промышленности, спортивных и торговых комплексов. При включении устройств подачи воды в таких системах, нет необходимости в скорейшей эвакуации людей из помещения, что является весомым плюсом в пользу их выбора.

Что касается эффективности работы систем автоматического пожаротущения, то на сегодня она невысокая. При сильном возгорании такие системы не в состоянии полностью потушить огонь, но могут замедлить его распространение до приезда пожарных служб.

17.4 Тяжесть труда — характеристика трудового процесса, отражающая нагрузку на опорно-двигательный аппарат и функциональные системы (сердечно-сосудистую, дыхательную и др.).

Напряженность труда отражает значимую для человека ситуацию, является индикатором соответствия средств и условий деятельности возможностям человека, характеризуется степенью активизации функций, обеспечивающих деятельность, нервно-психическими затратами на нее и является одной из характеристик, составляющих тяжесть труда. Тяжесть трудового процесса – уровень физических нагрузок, которые испытывает работник при выполнении сменных заданий. Она характеризуется:

1. Физической динамической нагрузкой только перемещение грузов за смену кг х м (показатель отдельно для мужчин и женщин).

2. Массой поднимаемого и перемещаемого груза вручную, кг (показатели отдельно для мужчин и женщин).

3. Стереотипными (повторяющимися) рабочими движениями за смену (в большей степени – это относится к работниками, работающим с компьютерами и электронно-вычислительными машинами).

4. Статичной нагрузкой:

– приложение физических усилий при удержании груза за смену;

5. Рабочей позой:

– нахождение работника в свободной позе;

– нахождение работника в неудобной позе (работа с поворотом туловища, неудобным размещением конечности);

– нахождение работника в вынужденной позе (на коленях, на корточках и т.п.).

6. Наклонами корпуса (вынужденные более 30°). Измеряется в количествах за смену.

7. Перемещением в пространстве, обусловленные технологическим процессом. Измеряется в км. Сколько работник передвигается за смену.

Оценка тяжести трудового процесса подразделяется на классы. Наивысшая оценка тяжести трудового процесса 3.3.

Итоговая оценка тяжести трудового процесса устанавливается по показателю, получившему наиболее высокую степень.

При наличии трех и более показателей класса 3.1 или 3.2 условия труда по тяжести трудового процесса оцениваются на одну степень выше (соответственно классы 3.2 и 3.3).

Напряженность трудового процесса подразделяется на:

– интеллектуальные нагрузки;

– сенсорные нагрузки;

– эмоциональные нагрузки;

– монотонные нагрузки;

– режим работы (сменность).

17.5 Виды систем вентиляции

Системы вентиляции по способу перемещения воздуха делят на системы с естественным и искусственным побуждением движения воздуха. В системах с естественным побуждением воздух поступает и удаляется из помещений за счет гравитационных сил и ветрового давления. В системах с искусственным или механическим побуждением воздух перемещается с помощью вентиляторов.

По назначению системы вентиляции подразделяют на приточные прямоточные и с рециркуляцией (полной или частичной), вытяжные. Прямоточные приточные системы служат для подачи в помещения наружного воздуха, обрабатываемого в зависимости от параметров наружного и внутреннего воздуха, если это экономически целесообразно или вредные вещества относятся ко 1 и 2 классу опасности. Вытяжные системы позволяют удалить из помещений загрязненный воздух. Рециркуляционные системы позволяют в разных соотношениях смешивать наружный воздух с воздухом помещения или использовать полностью внутренний воздух с последующей обработкой его для создания в помещении требуемых условий с наименьшими энергозатратами.

По способу организации подачи приточного воздуха и удаления вредных выделений системы делят на общеобменные и местные. При общеобменной вентиляции приточный воздух подается непосредственно в помещение с постоянным пребыванием людей, а удаляется загрязненный воздух из зон помещения с наибольшей концентрацией вредных выделений. Местные приточные системы позволяют подать воздух в определенные зоны помещения, фиксированные рабочие места, а местные вытяжные системы удалить загрязненный воздух непосредственно от источника вредных выделений.

Естественная вентиляция

Системы естественной вентиляции позволяют обеспечить неорганизованный или организованный воздухообмен, проветривание в помещении под действием гравитационного и (или) ветрового давления.

Гравитационное давление равно произведению разности плотностей наружного и удаляемого из помещения воздуха на расстояние по вертикали от центров отверстий приточного и удаляемого воздуха (рис.1).

Гравитационное давление систем естественной вентиляции для жилых, общественных и административно-бытовых зданий следует рассчитывать на разность удельных весов наружного воздуха с температурой 5°C и температурой внутреннего воздуха при расчетных параметрах для холодного периода года.

Р е = h (рн - рв) , Па

Ветровое давление зависит от скорости набегающего воздушного потока на наружную поверхность здания и доли динамического давления, преобразующегося в статическое.

Рv = A p v2/2 , Па

где рн и рв - плотность наружного и внутреннего воздуха, Н/м2; h - расстояние по вертикали от центров отверстий приточного и удаляемого воздуха, м; А - аэродинамический коэффициент, показывающий долю динамического давления, преобразующегося в статическое при взаимодействии воздушного потока с наружными ограждениями здания [4]; v - скорость ветра, м/с [2].

В жилых зданиях и в некоторых помещениях общественных и административно-бытовых зданиях предусматривается вентиляция с естественным побуждением (рис.2, 3). В таких системах неорганизованное поступление наружного воздуха осуществляется через неплотности в ограждениях, открываемые периодически форточки, окна, наружные и балконные двери здания или специальные устройства, располагаемые в стенах, окнах. Удаление воздуха из помещений, как правило, предусматривается через вытяжные шахты, каналы, воздуховоды и воздухоприемные устройства (рис.4, 5).

Организованный воздухообмен, при котором воздух поступает в помещение и удаляется из него через специально предусмотренные расчетом отверстия в наружных ограждениях (окна, фонари), называется аэрацией. Количество поступающего и удаляемого воздуха регулируется за счет изменения в течение года площади открываемых отверстий. Аэрация может применяться, например, для вентиляции производственных помещений, в которых основной вредностью является значительная избыточная теплота (рис.1).

При значительной скорости ветра используется специальное вентиляционное устройство - дефлекторы (рис.6, 7).

Естественная вентиляция отличается простотой устройства, незначительными капитальными затратами и эксплуатационными расходами, но давление, создаваемое естественными силами, невелико и зависит преимущественно от состояния наружного воздуха. Поэтому интенсивность воздухообмена в помещениях зависит от внешних факторов. Это, собственно, является существенным недостатком естественной вентиляции. В отдельные часы суток дня в теплый период года, в связи с теплоустойчивостью здания возможно отсутствие воздухообмена (особенно в помещениях цокольного и подвального этажей).

Механическая вентиляция

Механическая вентиляция позволяет обеспечить подачу расчетного количества приточного воздуха на значительные расстояния в пределах здания непосредственно к рабочим местам или в определенные зоны помещений, в необходимом количестве и с определенной скоростью на выходе из воздухораспределителей, а также удаление загрязненного воздуха из помещений в заданном объеме.

Необходимость, производительность по воздуху, тип приточной и вытяжной механической вентиляции определяется количеством, классом опасности, видом выделяемых в помещении вредных веществ и их ПДК, а также количеством выделяемой влаги и теплоты от людей, технологического оборудования и теплопоступлений от солнечной радиации через окна и покрытие

Приточная система вентиляции включает воздухозаборное устройство, приточную установку, сеть воздуховодов, воздухораспределители, устройства для регулирования воздуха (рис.8). Приточные установки (камеры), содержащие утепленный клапан, устройство для очистки, нагревания и перемещения воздуха, и при необходимости шумоглушитель, выполняют в строительном (рис.9) и в сборном заводском (рис.10) исполнении.

Вытяжная система вентиляции состоит (начиная от забора загрязненного воздуха) из воздухоприемных устройств в виде решеток, зонтов, укрытий, местных отсосов, воздуховодов, устройства для перемещения, очистки, если требуется, удаляемого загрязненного воздуха от вредных веществ перед выбросом в атмосферу и воздуховыбросного устройства (рис.8).

Устройство в одном помещении приточной и вытяжной систем вентиляции обеспечивает наиболее благоприятное, организованное движение воздуха в нем и, как правило, применяется в помещениях с большим количеством вентиляционного воздуха (залы, аудитории, классы и пр.)

Очень часто в здании имеются помещения с разными требованиями к параметрам внутреннего воздуха, т.е. так называемые "чистые" и "грязные". В этом случае необходимо организовать подачу приточного воздуха в "чистые" помещения в объеме, превышающем объем удаляемого из них воздуха, чтобы исключить перетекание воздуха из помещений "грязных" в "чистые".

Только вытяжные системы могут предусматриваться в помещениях, из которых не должен попадать загрязненный воздух в соседние помещения (например, химические лаборатории, кухни, санузлы и т.п.).

Местные приточные системы обеспечивают подачу воздуха в определенную зону помещения. К ним можно отнести воздушные души, передвижные душирующие установки для создания в локальной зоне условий, благоприятных для человека. Находят применение также воздушные (без подогрева воздуха) и воздушно-тепловые завесы. Первые используют для предотвращения поступления воздуха через открытые проемы, двери и ворота из одних помещений, где имеются вредные пары, газы и пр., в другие, в которых таких вредных выделений нет. Воздушно-тепловые завесы позволяют предотвратить поступление в здание холодного наружного воздуха через проходы, ворота и проемы в ограждениях, постоянно или временно открытые.

Местные вытяжные системы вентиляции применяют для улавливания и удаления вредных выделений непосредственно от мест их образования меньшим объемом воздуха, что позволяет исключить распространение выделений по помещению, сократить воздухообмен в помещении и тем самым снизить расходы на обработку приточно-вытяжного воздуха. Материал воздуховодов, тип вентилятора, воздухоочистного устройства зависит от вида вредных веществ (пары кислот, щелочи, пыль и пр.). Для удаления запыленного воздуха от укрытий технологического оборудования при производстве, например, асбеста, цемента, от мест пыления при дроблении, сортировке и измельчении материалов или пересыпки их применяют так называемые системы аспирации. Для удаления, например, древесных опилок и стружки проектируется система пневмотранспорта.

Б18.1Механич. колебания в упругих средах вызывают распространение в этих средах упругих волн, называемых акустич. колебаниями. Энергия от источника колебаний передается частицам среды. По мере распространения волны частицы вовлекаются в колебат. движение с частотой, равной частоте источника колебаний, и с запаздыванием по фазе, зависящем от расстояния до источника и от скорости распространения волны. Расстояние между двумя ближайш. частицами среды, колеблющимися в одной фазе, называется длиной волны. Длина волны — это путь, пройденный волной за время, равное периоду колебаний.Скорость звука в воздухе при нормальных условиях составляет 330 м/с, в воде около 1400 м/с, в стали порядка 5000 м/с. При восприятии человеком звуки различают по высоте и громкости. Высота звука определяется частотой колебаний: чем больше частота колебаний, тем выше звук. Однако субъективно оцениваемая громкость возрастает гораздо медленнее, чем интенсивность звуковых волн. Для сравнит. оценки можно указать, что средний уровень громкости речи составляет 60 дБ, а мотор самолета на расстоянии 25 м производит шум в 120 дБ. Миним. интенсивность звуковой волны, вызывающая ощущение звука, называется порогом слышимости. Порог слышимости у разных людей различен и зависит от частоты звука. Интенсивн. звука, при которой ухо начинает ощущать давление и боль, называется порогом болевого ощущения. На практике в качестве порога болевого ощущения принята интенсивность звука140 дБ.Шум — совокупность звуков различн. частоты и инт-сти, беспорядочно изменяющихся во времени. Для нормальн. существования, чтобы не ощущать себя изолированным от мира, человеку нужен шум в 10—20 дБ. Развитие техники и промышленного производства сопровождалось повышением уровня шума, воздействующего на человека. По частотному диапазону шумы подразделяются на низкочастотн. — до 350 Гц среднечастотн. 350—800 Гц и высокочастотн. — выше 800 Гц.

По характеру спектра шумы бывают широкополосные, с непрерывным спектром и тональные, в спектре которых имеются слышимые тона.

По временным характеристикам шумы бывают постоян., прерывист., импульсн., колеблющ. во времени.Звуковое давление - это среднее по времени избыточн. давление на препятствие, помещ. на пути волны. Для практических целей удобной является характеристика звука, измеряемая в децибелах. Для оценки различных шумов измеряются уровни звука с помощью шумомеров.Для оценки физиологич. воздействия шума на человека используется громкость и уровень громкости. Шум оказывает вредное воздействие на организм человека, особенно на ЦНС, вызывая переутомление и истощение клеток головного мозга. Под влиянием шума возникает бессонница, быстро развивается утомляемость, понижается внимание, снижается общая работоспособность и производ-сть труда. Длит. воздействие на организм шума и связанные с этим нарушения со стороны центральной нервной системы рассматриваются как один из факторов, способствующ. возникновению гипертонич. болезни.Под влиянием шума возникают явления утомления слуха и ослабления слуха. Эти явления с прекращением шума быстро проходят. Если же переутомление слуха повторяется систематически в течение длит. срока, то развивается тугоухость. Так, кратковрем. воздейств. уровня 120 дБ (рев самолета), не приводит к необратимым последствиям. Длительн. воздействие шума 80—90 дБ приводит к профессиональной глухоте. Тугоухость — стойкое понижение слуха, затрудняющее восприятие речи окружающих в обычных условиях. Оценка состояния слуха производится с помощью аудиометрии. Аудиометрия — изменение остроты слуха, — проводится с помощью спец. электроакустич. аппарата — аудиометра.

Уровень шума нормируется санитарными нормами и государственными стандартами и не должен превышать допустимых значений.

18.2. Параметры микроклимата оказывают непосредственное влияние на тепловое самочувствие человека и его работоспособность. Например, понижение температуры и повышение скорости движения воздуха способствуют усилению конвективного теплообмена и процесса теплоотдачи при испарении пота, что может привести к переохлаждению организма. Повышение скорости движения воздуха ухудшает самочувствие, так как способствует усилению конвективного теплообмена и процессу теплоотдачи при испарении пота.

При повышении температуры воздуха возникают обратные явления. Исследователями установлено, что при температуре воздуха более 300С работоспособность человека начинает падать. Для человека определены максимальные температуры в зависимости от длительности их воздействия и используемых средств защиты. Существенное значение имеет равномерность температуры. Вертикальный градиент не должен выходить за пределы 5 0 С.

Переносимость человеком температуры, как и его теплоощущение, в значительной мере зависит от влажности и скорости окружающего воздуха. Чем больше относительная влажность, тем меньше испаряется пота в единицу времени и тем быстрее наступает перегрев тела.

Недостаточная влажность воздуха также может оказаться неблагоприятной для человека вследствие интенсивного испарения влаги со слизистых оболочек, их пересыхания и растрескивания, а затем и загрязнение болезнетворными микроорганизмами. Поэтому при длительном пребывании людей в закрытых помещениях рекомендуется ограничиваться относительной влажностью в пределах 30…70%.

18.3К первичным средствам тушения загораний и пожаров относят различные огнетушители, песок, кошмы, внутренние пожарные краны. Пользование ими рассчитано на любого человека, оказавшегося на месте загорания и пожара. Наибольшее распространениев качестве первичныхсредств тушения загораний и пожаров получили огнетушители. По содержанию огнетушащих веществ огнетушители подразделяют на пенные, газовые и порошковые.

Ручные пенные огнетушители. Основным ручным аппаратом для получения химической пены является огнетушитель ОХП-10 (огнетушитель химический пенный модель 10).

Рис. 76. Химический огнетушитель ОХП-10:

1 — корпус; 2 — кислотный стакан; 3 — ручка; 4 — переходник горловины; 5 — горловина; 6 — рукоятка; 7 — шток; 8 — крышка; 9 — резиновые прокладки; 10 — пружина; 11 — спрыск; 12 — клапан; 13 — накидная гайка; 13 — мембрана; 15 — штуцер предохранителя; 16 — дно

Огнетушитель ОХП-10 (рис. 76) представляет собой баллон с находящимся внутри него зарядом. Заряд состоит из щелочной и кислотной частей. Щелочная часть представляет собой водный раствор двууглекислой соды (бикарбоната натрия NaHCO8). В щелочной раствор добавляют небольшое количество вспенивателя — солодкового экстракта. Кислотная часть представляет собой смесь серной кислоты H2SO4 с сернокислым окисным железом Fe2(SO4)3, сернокислым алюминием и т. д. Ее содержат в специальном герметически закрытом стеклянном стакане, а щелочной раствор заливают в корпус огнетушителя.

Перед началом работы огнетушителя необходимо прочистить спрыск шпилькой, подвешенной к огнетушителю.

Все объявления

ЯндексДирект

Огнетушащие порошки ЭкохиммашПроизводство огнетушащих порошков европейского качества www.ecochim.ru

Чтобы привести огнетушитель в действие, нужно поднять вверх рукоятку, при этом открывается клапан кислотного стакана, и перевернуть огнетушитель. Кислотная часть заряда вытекает из стакана и смешивается с раствором щелочной части заряда. В результате химической реакции образуется углекислый газ, создающий в корпусе огнетушителя давление, под которым заряд выбрасывается через спрыск в виде химической пены.

Огнетушитель ОХП-10 работает всего лишь около 1 мин и дает до 45 л пены. Дальность полета струи около 8 м.

Пена, получаемая с помощью химических пенных огнетушителей, электропроводна, поэтому химические пенные огнетушители нельзя применять для тушения загораний в электроустановках, находящихся под напряжением.

Газовые огнетушители. В качестве огнетушащего средства в этих огнетушителях в основном используют углекислоту, углекислотно-бромэтиловый состав, реже четыреххлористый углерод, азот и другие инертные газы.

Углекислотные огнетушители выпускаются емкостью 2; 5 и 8 л, соответственно марок ОУ-2, ОУ-5 и ОУ-8.

Рис. 77. Углекислотный огнетушитель ОУ-2

Все объявления

ЯндексДирект

ПротивогазыПротивогазы в наличии. Продажа оптом и в розницу. Доставка во все регионы! www.ssr-russia.ru

Основными частями углекислотного огнетушителя (рис. 77) являются: корпус в виде стального баллона 1, латунный запорный вентиль 2 с сифонной трубкой, раструб-снегообразователь 4,присоединяемый к запорному устройству с помощью накидной гайки 3. Запорный вентиль имеет предохранительное устройство в виде мембраны, которое срабатывает при повышении давления в баллоне огнетушителя сверх допустимого. Обычно газ в баллонах находится под давлением 60 ат. Предохранительное устройство срабатывает при повышении давления в огнетушителе до 180—210 ат. Время действия ручных угле-кислотных огнетушителей до 40 с.

Значительно больший заряд углекислоты содержат одно- и двухбаллонные углекислотные огнетушители УП-1М и УП-2М с емкостью баллонов 27 и 40 л.

В производственных зданиях могут применяться стационарные двухбаллонные огнетушители с углекислотой или составом 3,5. Баллоны имеют емкость 40 л, открываются вручную. Подача углекислоты производится по шлангу длиной 30 м с раструбом на конце,

Все объявления

ЯндексДирект

Чертежи и схемыЛюбые чертежи, схемы и техническая документация в режиме онлайн. chertezhik.in

Порошковые огнетушители. Промышленностью выпускаются порошковые огнетушители ОП-1 и ОП-10.

Огнетушитель ОП-1 применяют для тушения загораний двигателей, электроустановок, находящихся под напряжением, горючих жидкостей. Полезная емкость корпуса огнетушителя 1,2 л. Заряд огнетушителя — порошок ПСБ, состоящий из бикарбоната натрия (88%), талька (10%) и стеаратов металлов — железа, алюминия, магния, кальция или цинка — по выбору (2%).

В зависимости от интенсивности встряхивания огнетушителя время истечения порошка — в пределах 20—50 с. Заряженный огнетушитель весит 1450 г.

Рис. 78. Порошковый огнетушитель ОП-1:

1 — крышка; 2 —распылитель; 3 — корпус

Огнетушитель ОП-1 (рис. 78) представляет собой цилиндрический корпус, в горловину которого вставляется сетчатый распылитель, имеющий 19 отверстий диаметром 6 мм каждое. Горловина закрывается крышкой на резьбе, а для уплотнения в крышку вставляют резиновую прокладку. Для обеспечения возможности осмотра внутренней поверхности огнетушителя при зарядке и очистке от загрязнений распылитель и крышку делают из полиэтилена.

Загорания тушат огнетушителем ОП-1 путем энергичного встряхивания и выбрасывания порошка через сетчатый распылитель, чем создается туманообразное облако порошка в зоне горения. Огнетушитель ОП-10 имеет баллон емкостью 10 л, в который вмещается 10 кг порошка. В корпус огнетушителя вмонтирован баллон емкостью 300 мл для сжатого газа. Аэрозольный способ вытеснения порошка из огнетушителя позволяет выбросить весь порошковый заряд за 25—30 с на расстояние 6— 8 м.

Огнетушитель ОП-10 предназначен для тушения горючих жидкостей и электроустановок, находящихся под напряжением.

Все объявления

ЯндексДирект

Охранно-пожарная сигнализация.Системы охранно-пожарной сигнализации. Монтаж, обслуживание. secgroup.ru

Аппараты стационарного типа, устанавливаемые в цехах, и передвижные огнетушащие установки. В цехах машиностроительных предприятий можно встретить стационарные установки воздушно-пенного огнетушения, стационарные и передвижные углекислотные установки, установки СЖБ и др.

Рис. 79. Схема стационарного воздушно-пенного огнетушителя:

1— трубка для подачи сжатого воздуха; 2 — резервуар для водного раствора пенообразователя; 3 — приспособление для заливки в резервуар пенообразователя; 4— патрубок для выхода пены

Стационарные воздушно-пенные огнетушители (рис. 79) нашли применение в цехах, где постоянно имеется сжатый воздух, используемый для производственных целей. Установка состоит из резервуара 2, в котором постоянно хранится водный раствор пенообразователя, заливаемый через приспособление 3. К резервуару подключен трубопровод сжатого воздуха 1. При возникновении пожара к патрубку для выхода пены 4 присоединяют рукав и открывают вентиль на трубопроводе сжатого воздуха. При емкости резервуара огнетушителя 250 л из него можно получить до 7,5 м3 воздушно-механической пены.

Более эффективная защита объектов от пожара обеспечивается внедрением огнетушителей высокократной пены ОВП-100 и ОВПУ-250. Первый их них — передвижной, образует около 9 м3 пены высокой кратности (до 100), другой — стационарный, дает до 25 м3 пены. Такое количество пены достаточно для тушения горения на площади до 100 м2.

Для тушения загораний электрообрудования, находящегося под напряжением, и в тех случаях, когда пена для тушения не может быть применена, устанавливают стационарные углекислотные установки тина СУМ-8 (стационарная, углекислотная, местная, восьмибаллонная). Восемь баллонов этой установки включаются попарно и приводятся в действие четырьмя пусковыми механизмами.

Для тушения небольших очагов пожаров горючих веществ и тлеющих материалов, а также электроустановок, находящихся под напряжением, применяют также огнетушащие установки СЖБ-50 и ОКБ-150, в которых в качестве огнетушащего состава применяется бромистый этил и фреон-114В2.

18.4Напряженность труда – характеристика трудового процесса, отражающая нагрузку преимущественно на центральную нервную систему, органы чувств, эмоциональную сферу работника (Р 2.2.2006-05. прил. 16).

Оценка напряженности труда профессиональной группы работников основана на анализе трудовой деятельности и ее структуры, которые изучаются путем хронометражных наблюдений в динамике всего рабочего дня, в течение не менее одной недели.

Анализ основан на учете всего комплекса производственных факторов (стимулов, раздражителей), создающих предпосылки для возникновения нервно-эмоционального состояния (перенапряжения).

Все показатели (факторы) имеют качественную или количественную выраженность и сгруппированы по видам нагрузок:

Интеллектуальные:

1. «Содержание работы» указывает на степень сложности выполнения задания: от решения простых задач до творческой (эвристической) деятельности с решением сложных заданий при отсутствии алгоритма.

2. «Восприятие сигналов (информации) и их оценка» - поступающая при работе информация сравнивается с нормальными значениями, необходимыми для хода трудового процесса.

3. «Распределение функций по степени сложности задания» - любая трудовая деятельность характеризуется распределением функций между работниками. Соответственно, чем больше возложено функциональных обязанностей на работника, тем выше напряженность труда.

4. «Характер выполняемой работы» - в том случае, когда работа выполняется по индивидуальному плану, то уровень напряженности невысок. Если работа протекает по строго установленному графику с возможной его коррекцией по мере необходимости, то напряженность повышается. Если большая напряженность труда характерна, когда работа выполняется в условиях дефицита времени. Наибольшая напряженность характеризуется работой в условиях дефицита времени и информации.

Сенсорные:

5. «Длительность сосредоточенного наблюдения (% от времени смены)» - чем больше процент времени отводится в течение смены на сосредоточенное наблюдение, тем выше напряженность.Общее время рабочей смены принимается за 100%;

6. «Плотность сигналов (световых, звуковых) и сообщений в среднем за 1 час работы» - количество воспринимаемых и передаваемых сигналов (сообщений распоряжений) позволяет оценивать занятость, специфику деятельности работника. Чем больше число сигналов, тем выше информационная нагрузка, приводящая к возрастанию напряженности;

7. «Число производственных объектов одновременного наблюдения» - указывает, что с увеличением числа объектов одновременного наблюдения возрастает напряженность труда. Эта характеристика труда предъявляет требования к объему внимания (от 4 до 8 не связанных объектов) и его распределению как способности одновременно сосредотачивать внимание на нескольких объектах или действиях;

8. «Размер объекта различения при длительности сосредоточенного внимания (% от времени смены)» - чем меньше размер предмета (изделия, детали, цифровой или буквенной информации и т.п.) и чем продолжительнее время наблюдения, тем выше нагрузка на зрительный анализатор. Соответственно возрастает класс напряженности труда;

9. «Работа с оптическими приборами (микроскоп, лупа и т.п.) при длительности сосредоточенного наблюдения (% от времени смены)». На основе хронометражных наблюдений определяется время (часы, минуты) работы за оптическим прибором. Продолжительность рабочего дня принимается за 100%, а время фиксированного взгляда с использованием микроскопа, лупы переводится в проценты. Чем больше процент времени, тем больше нагрузка, приводящая к развитию напряжения зрительного анализатора.

10. «Наблюдение за экраном видеотерминала (ч в смену)». Фиксируется время (ч, мин) непосредственной работы пользователя ВДМ с экраном дисплея в течение всего рабочего дня, чем больше время фиксации взора на экран ВДТ, тем больше нагрузка на зрительный анализатор и тем выше напряженность труда.

11. «Нагрузка на слуховой анализатор». Показателем «нагрузка на слуховой анализатор» необходимо характеризовать такие работы, при которых исполнитель в условиях повышенного уровня шума должен воспринимать на слух речевую информацию или другие слуховые сигналы, которыми он руководствуется в процессе работы.

12. «Нагрузка на голосовой аппарат (суммарное количество часов наговариваемых в неделю)». Степень напряжения голосового аппарата зависит от продолжительности речевых нагрузок. Перенапряжение голоса наблюдается при длительной, без отдыха голосовой деятельности.

Эмоциональные:

13. «Степень ответственности за результат собственной деятельности, значимость ошибки» - указывает, в какой мере работник может влиять на результат собственного труда при различных уровнях сложности осуществляемой деятельности. С возрастанием сложности повышается степень ответственности, что соответственно приводит к увеличению эмоционального напряжения. По данному показателю оценивается ответственность работника за качество элементов заданий вспомогательных работ, основной работы или конечной продукции.

14. «Степень риска для собственной жизни». Мерой риска является вероятность наступление нежелательного события. На рабочем месте анализируют наличие травмоопасных факторов, которые могут представлять опасность для жизни работающих, и определяют возможную зону их влияния. Данным показателем характеризуют те рабочие места, где существует прямая опасность (взрыв, удар, самовозгорание).

15. «Ответственность за безопасность других лиц». При оценке напряженности необходимо учитывать лишь прямую, а не опосредованную ответственность (последняя распределяется на всех руководителей), то есть такую, которая вменяется должностной инструкцией.

16. «Количество конфликтных производственных ситуаций за смену». Наличие конфликтных ситуаций в производственной деятельности ряда профессий (сотрудники всех звеньев прокуратуры, системы МВД, преподаватели и др.) существенно увеличивают эмоциональную нагрузку и подлежат количественной оценке. Количество конфликтных ситуаций учитывается на основании хронометражных наблюдений.

17. «Число элементов (приемов), необходимых для реализации простого задания или многократно повторяющихся операций» и

18. «Продолжительность (с) выполнения простых производственных заданий или повторяющихся операций» - чем меньше число выполняемых приемов и чем короче время, тем, соответственно, выше монотонность нагрузок. Данные показатели наиболее выражены при конвейерном труде. Необходимым условием для отнесения операций и действий к монотонным является не только их частая повторяемость и малое количество приемов, но также их однообразие и низкая информационная содержательность.

19. «Время активных действий (в % к продолжительности смены)». Наблюдение за ходом технологического процесса не относится к «активным действиям». Чем меньше время выполнения активных действий и больше время наблюдения за ходом производственного процесса, тем, соответственно монотонность нагрузок.

20. «Монотонность производственной обстановки (время пассивного наблюдения за ходом техпроцесса, в % от времени смены» - чем больше время пассивного наблюдения за ходом технологического процесса, тем более монотонной является работа.

Режимные:

21. «Фактическая продолжительность рабочего дня» - выделен в самостоятельную рубрику, так как независимо от числа смен и ритма работы фактическая продолжительность рабочего дня колеблется от 6-8ч (телефонисты, телеграфисты и т.п.) до 12 ч и более (руководители промышленных предприятий). У целого ряда профессий продолжительность смены составляет 12 ч и более (врачи, медсестры и т.п.). Чем продолжительнее работа по времени, тем больше суммарная за смену нагрузка, и, соответственно, выше напряженность труда;

22. «Сменность работы» определяется на основании внутрипроизводственных документов, регламентирующих распорядок дня на данном предприятии, организации;

23. «Наличие регламентированных перерывов и их продолжительность (без учета обеденного перерыва)». К регламентированным перерывам следует относить только те перерывы, которые введены в регламент рабочего времени на основании официальных производственных документов. Недостаточная продолжительность или отсутствие регламентированных перерывов усугубляет напряженность труда, поскольку отсутствует элемент кратковременной защиты временем от воздействия факторов трудового процесса и производственной среды.

Общая оценка напряженности трудового процесса

Напряженность трудового процесса проводится по методике,утвержденной Минздравом Российской Федерации (в соответствии с "Гигиеническими критериями оценки условий труда по показателям вредности и опасности факторов производственной среды, тяжести и напряженности трудового процесса").

Независимо от профессиональной принадлежности (профессии) учитываются все 22 показателя.

Не допускается выборочный учет каких либо отдельно взятых показателей для общей оценки напряженности труда.

Наивысшая степень напряженности труда соответствует классу 3.3.

При отнесении условий труда по тяжести и напряженности трудового процесса к 3 (вредному) классу необходима разработка мероприятий по улучшению условий труда работников.

Организация и проведение мероприятий осуществляется в соответствии с требованиями нормативных документов.

К таким мерам относятся:

внедрение профилактических мероприятий, способствующих снижению монотонности работы (изменение цвето-, светодизайна в течение рабочей смены, уровней освещенности, громкости музыки, т.п.);

разработка рациональных (физиологически обоснованных) режимов труда и отдыха (оздоровительная физкультура, физкультпаузы и др.);

механизация и автоматизация производственных процессов;

снижение норм выработки и др.

18.5

Виды воздействия электрического тока:

Термическое. результат воздействия - ожоги, нагрев ткани.

Электролитическое. Результат воздействия - разложение органики внутри человека (кровь).

биологическое. Результат воздействия - спазм (сокращение) мышц.

Электродинамическое (механическое), приводит к разрыву мышц. Наличие источника напряжения и замкнутой цепи приводит к удару током.

Электротравма - травма, полученная в результате воздействия электрического тока или электрической дуги.

Виды электротравм:

Местная электротравма (вероятность 20%);

Электрические удары (25%);

Смешанные (55%). Виды местных электротравм:

Ожог. Получается в результате воздействия электрической дуги. Симптомы - покраснение, образование пузыря, омертвление кожи, обугливание.

Электрические знаки. Сопротивление кожи и внутренних органов, приводит к пробою кожи в виде кружочка в месте прохождения электрического тока через кожу.

металлизация кожи. При возникновении короткого замыкания происходит расплавление электрических частей, и разлетающиеся в разные стороны частицы металла попадают на кожу.

механические повреждения.

электроавтономные. При возникновении электрической дуги происходит яркая вспышка и воздействует на сетчатку глаза (яркие электрические искры при сварке).

Смешанные.

Степени воздействия электрических ударов на тело человека:

1 степень - судорожные едва ощутимые сокращения мышц;

2 степень - судорожные сокращения мышц без потери сознания;

3 степень - потеря сознания с сохранением дыхания и работы сердца;

4 степень - потеря сознания с нарушением дыхания и работы сердца;

5 степень - клиническая смерть.

Виды смерти:

биологическая - необратимое прекращение биологических процессов в клетках и тканях организма.

клиническая - короткий период (в пределах 4-6 минут, точное время зависит от температуры окружающей среды) после прекращения дыхания и сердечной деятельности, в который еще сохраняется жизнеспособность тканей. В это период существует возможность вернуть человека к жизни.

Факторы влияющие на исход поражения электрическим током:

Электрическое сопротивление тела человека. Человека поражает ток, который зависит от напряжения и сопротивления тела:

.

Части тела человека, повреждаемые при поражении человека электрическим током:

кожа в месте входа тока;

внутренние органы;

кожа в месте выхода тока.

Сопротивление внутренних органов мало. Сопротивление кожи зависит от ее состояния (чистая и сухая или влажная (вспотевшая)).

Электрические параметры:

сопротивления в электроде.

Сила тока. Вызывает повышенное потовыделение и усиливает кровообращение в местах прохождения электрического тока.

Напряжение. Чем выше напряжение, тем меньше сопротивление тела человека. Сопротивление человека может изменяться в 200 раз. При напряжении >50 В сопротивление человека равно 1000 Ом, при напряжении <50 В сопротивление человека равно 6000 Ом.

Величина и длительность воздействия тока на тело человека.

Виды тока:

ощутимый ток (1 мА0 для переменного напряжения);

неотпускающий ток 10-15 мА;

смертельный ток 0,1 А.

Длительность тока определяется: сердце в расслабленном состоянии 1 сек. (где через 0,5 сек. наступает фибриляция сердца).

Пути протекания тока:

правая рука - голова;

левая рука - голова;

правая рука - левая рука;

правая нога - левая нога;

правая нога - правая рука;

правая нога - левая рука;

левая нога - правая рука;

левая нога - левая рука;

голова - ноги.

Смертельный путь прохождения тока: голова - левая рука (левая нога).

Род и частота тока (напряжение до 500 В). Переменный ток опаснее постоянного. При повышении частоты тока до 50 Гц возрастает вероятность летального исхода, при дальнейшем увеличении частоты тока опасность снижается.

Индивидуальные характеристики человека:

состояние здоровья;

сердечно-сосудистые заболевания;

кожные заболевания.

Б19.1Законом РФ об охране окружающей природной среды (1991 г.) предусмотрены меры по предупреждению и устранению вредных физических воздействий, включая и электромагнитные поля.

Опасное воздействие на работающих могут оказывать не только электромагнитные поля радиочастот (60 кГц-300 ГГц), но и электрические поля промышленной частоты (50 Гц).

Источником электрических полей промышленной частоты являются токоведущие части действующих электроустановок (линии электропередач, индукторы, конденсаторы термических установок, фидерные линии, генераторы, трансформаторы, электромагниты, соленоиды, импульсные установки полупериодного или конденсаторного типа, литые и металлокерамические магниты и др.). Длительное воздействие электрического поля на организм человека может вызвать нарушение функционального состояния нервной и сердечно-сосудистой систем. Это выражается в повышенной утомляемости, снижении качества выполнения рабочих операций, болях в области сердца, изменении кровяного давления и пульса.

На протяжении миллиардов лет естественное магнитное поле земли, являясь первичным периодическим экологическим фактором, постоянно воздействовало на состояние экосистем. В ходе эволюционного развития структурно-функциональная организация экосистем адаптировалась к естественному фону. Некоторые отклонения наблюдаются лишь в периоды солнечной активности, когда под влиянием мощного корпускулярного потока магнитное поле земли испытывает кратковременные резкие изменения своих основных характеристик. Этот явление, получившее название магнитных бурь, неблагоприятно отражается на состоянии всех экосистем, включая и организм человека. В этот период отмечается ухудшение состояние больных, страдающих сердечно-сосудистыми, нервно-соматическими и другими заболеваниями. Влияет магнитное поле и на животных, в особенности на птиц и насекомых.

На нынешнем этапе развития научно-технического прогресса человек вносит существенные изменения в естественное магнитное поле, придавая геофизическим факторам новые направления и резко повышая интенсивность своего воздействия. Основные источники этого воздействия - электромагнитные поля от линий электропередачи (ЛЭП) и электромагнитные поля от радиотелевизионных и радиолокационных станций.

На территории СНГ общая протяженность только ЛЭП-500 кВ превышает 20000 км (помимо ЛЭП-150 ЛЭП-300 ЛЭП-750). Линии электропередачи и некоторые другие энергетические установки создают электромагнитные поля промышленных частот (50 Гц) в сотни раз выше среднего уровня естественных полей. Напряженность поля под ЛЭП может достигать десятков тысяч В/М.

Наибольшая напряженность поля наблюдается в месте максимального провисания проводов, в точке проекции крайних проводов на землю и в пяти метрах от неё кнаружи от продольной оси трассы: для ЛЭП-330 кВ - 3,5 - 5,0 кВ/м, для ЛЭП - 500 кВ - 7,6 - 8 кВ/м, для ЛЭП-750 кВ - 10,0 - 15,0 кВ/м.

Отрицательное воздействие электромагнитных полей на человека и на те или иные компоненты экосистем прямо пропорционально мощности поля и времени облучения. Неблагоприятное воздействие электромагнитного поля, создаваемого ЛЭП, проявляется уже при напряженности поля, равной 1000 В/м. У человека нарушаются эндокринная система, обменные процессы, функции головного и спинного мозга и др.

Воздействие неионизирующих электромагнитных излучений от радиотелевизионных и радиолокационных станций на среду обитания человека связано с формированием высокочастотной энергии. Японскими учеными обнаружено, что в районах, расположенных вблизи мощных излучающих теле- и радиоантенн заметно повышается заболевание катарактой глаз. Медико-биологическое негативное воздействие электромагнитных излучений возрастает с повышением частоты, то есть с уменьшением длины волн.

Неионизирующие электромагнитные излучения радиодиапазона от радиотелевизионных средств связи, радиолокаторов и других объектов приводят к значительным нарушениям физиологических функций человека и животных. Вредное воздействие на человеческий организм невидимого, но очень опасного электромагнитного загрязнения окружающей среды идет гораздо более быстрыми темпами, чем прогресс в электронике.