
- •Научные методы и критерии научности
- •Предмет и специфика математики и её эффективность для естесвознания
- •Механицизм и его основные признаки.
- •Первый удар по механицизму. Статистическая молекулярно-кинетическая теория (газов)
- •Второй удар по механицизму. Статистическая термодинамика Больцмана
- •Третий удар по механицизму. Классическая электродинамика Максвелла. Понятие физического поля.
- •7) Специальная теория относительности. Сущность и постулаты.
- •8)Специальная теория относительности. Основной физический смысл.
- •9)Общая теория относительности. Сущность и постулаты.
- •10) Общая теория относительности. Основной физический смысл.
- •11)Предыстория возникновения квантовой механики (Планк, Резерфорд, Бор, Луи де Бройль)
- •12)Основания квантовой механики. Уравнение Шредингера. Волновая и матричная версия квантовой механики.
- •13)Корпускулярно-волновой дуализм.
- •14)Принцип наблюдаемости и наглядность квантово-механических явлений.
- •15)Соотношение неопределенностей Гейзенберга.
- •16)Принцип дополнительности Бора.
- •17)Вероятностно-статистическая природа квантовых объектов.
- •18)Проблема интерпретации квантовой механики (стандартная копенгагенская и альтернативные интерпретации).
- •[Править]Смысл волновой функции
- •Следствия
- •19)Общее представление о квантовой теории поля.
- •20)Проблема, состояние, перспективы единого описания всех физических взаимодействий.
- •21)Классическая ньютоновская космология.
- •22)Релятивистская космология (модель Большого взрыва).
- •23)Инфляционная космология (сценарии раздувающейся Вселенной).
- •24)Прошлое и будущее Вселенной в моделях Большого взрыва
- •25)Геологическая шкала времени
- •26)Строение Земли (геосферные оболочки)
- •Раздел I
- •РазделIi
- •27)Эволюция Земли
- •28)Будущее Земли
- •29)Этапы развития биологии как науки
- •30)Особенности жизни и живого организма
- •31)Происхождение жизни. Основные теории происхождения жизни.
- •32)Классическая теория биологической эволюции (дарвинизм)
- •33)Классическая гинетика (Мендель)
- •34)Биология поведения (этология и зоопсихология )
13)Корпускулярно-волновой дуализм.
Принцип, согласно которому любой объект может проявлять как волновые, так и корпускулярные свойства. Был введён при разработкеквантовой механики для интерпретации явлений, наблюдаемых в микромире, с точки зрения классических концепций. Дальнейшим развитием принципа корпускулярно-волнового дуализма стала концепция квантованных полей в квантовой теории поля.
Как классический пример, свет можно трактовать как поток корпускул (фотонов), которые во многих физических эффектах проявляют свойства электромагнитных волн. Свет демонстрирует свойства волны в явлениях дифракции и интерференции при масштабах, сравнимых с длиной световой волны. Например, даже одиночные фотоны, проходящие через двойную щель, создают на экране интерференционную картину, определяемуюуравнениями Максвелла[1].
Тем не менее, эксперимент показывает, что фотон не есть короткий импульс электромагнитного излучения, например, он не может быть разделён на несколько пучков оптическими делителями лучей, что наглядно показал эксперимент, проведённый французскими физиками Гранжье, Роже и Аспэ в 1986 году[2]. Корпускулярные свойства света проявляются при фотоэффекте и в эффекте Комптона. Фотон ведет себя и как частица, которая излучается или поглощается целиком объектами, размеры которых много меньше его длины волны (например, атомными ядрами), или вообще могут считаться точечными (например, электрон).
В настоящий момент концепция корпускулярно-волнового дуализма представляет лишь исторический интерес, так как служила только интерпретацией, способом описать поведение квантовых объектов, подбирая ему аналогии из классической физики. На деле квантовые объекты не являются ни классическими волнами, ни классическими частицами, приобретая свойства первых или вторых лишь в некотором приближении. Методологически более корректной является формулировка квантовой теории через интегралы по траекториям (пропагаторная), свободная от использования классических понятий.
Французский ученый Луи де Бройль (1892—1987), осознавая существующую в природе симметрию и развивая представления о двойственной корпускулярно-волновой природе света, выдвинул в 1923 году гипотезу об универсальности корпускулярно-волнового дуализма. Он утверждал, что не только фотоны, но и электроны и любые другие частицы материи наряду скорпускулярными обладают также волновыми свойствами.
Согласно де Бройлю, с каждым микрообъектом связываются, с одной стороны, корпускулярные характеристики — энергия и импульс , а с другой стороны — волновые характеристики — частота и длина волны.
Так как дифракционная картина исследовалась для потока электронов, то необходимо было доказать, что волновые свойства присущи каждому электрону в отдельности. Это удалось экспериментально подтвердить в 1948 году советскому физикуВ. А. Фабриканту. Он показал, что даже в случае столь слабого электронного пучка, когда каждый электрон проходит через прибор независимо от других, возникающая при длительной экспозиции дифракционная картина не отличается от дифракционных картин, получаемых при короткой экспозиции для потоков электронов в десятки миллионов раз более интенсивных.
Следующую трактовку корпускулярно-волнового дуализма дал физик В. А. Фок (1898—1974)[3]:
Можно сказать, что для атомного объекта существует потенциальная возможность проявлять себя, в зависимости от внешних условий, либо как волна, либо как частица, либо промежуточным образом. Именно в этой потенциальной возможности различных проявлений свойств, присущих микрообъекту, и состоит дуализм волна — частица. Всякое иное, более буквальное, понимание этого дуализма в виде какой-нибудь модели неправильно.
Однако Ричард Фейнман в ходе построения квантовой теории поля развил общепризнанную сейчас формулировку через интегралы по траекториям, которая не требует использования классических понятий «частицы» или «волны» для описания поведения квантовых объектов.
Такие явления, как интерференция и дифракция света, убедительно свидетельствуют о волновой природе света. В то же время закономерности равновесного теплового излучения, фотоэффекта и эффекта Комптона можно успешно истолковать с классической точки зрения только на основе представлений о свете, как о потоке дискретных фотонов. Однако волновой и корпускулярный способы описания света не противоречат, а взаимно дополняют друг друга, так как свет одновременно обладает и волновыми и корпускулярными свойствами.
Волновые свойства света играют определяющую роль в закономерностях его интерференции, дифракции, поляризации, а корпускулярные — в процессах взаимодействия света с веществом. Чем больше длина волны света, тем меньше импульс и энергия фотона и тем труднее обнаружить корпускулярные свойства света. Например, внешний фотоэффект происходит только при энергиях фотонов, больших или равных работе выхода электрона из вещества. Чем меньше длина волны электромагнитного излучения, тем больше энергия и импульс фотонов и тем труднее обнаружить волновые свойства этого излучения. Например, рентгеновское излучение дифрагирует только на очень «тонкой» дифракционной решетке — кристаллической решетке твердого тела.
Физика атомов, молекул и их коллективов, в частности кристаллов, а также атомных ядер и элементарных частиц изучается в квантовой механике. Квантовые эффекты являются существенными, если характерное значение действия (произведение характерной энергии на характерное время или характерного импульса на характерное расстояние) становится сравнимым с (постоянная Планка). Если частицы движутся со скоростями много меньше, чем скорость света в вакууме , то применяется нерелятивистская квантовая механика; при скоростях близких к — релятивистская квантовая механика.
В основе квантовой механики лежат представления Планка о дискретном характере изменения энергии атомов, Эйнштейна офотонах, данные о квантованности некоторых физических величин (например, импульса и энергии), характеризующих в определенных условиях состояния частиц микромира.
Де Бройль выдвинул идею о том, что волновой характер распространения, установленный для фотонов, имеет универсальный характер. Он должен проявляться для любых частиц, обладающих импульсом . Все частицы, имеющие конечный импульс , обладают волновыми свойствами, в частности, подвержены интерференции и дифракции.
Формула де Бройля устанавливает зависимость длины волны , связанной с движущейся частицей вещества, от импульса частицы:
где — масса частицы, — ее скорость, — постоянная Планка. Волны, о которых идет речь, называются волнами де Бройля.