
- •Предмет физики
- •Раздел 1. Физические основы механики.
- •Глава 1. Кинематика.
- •§1.1. Инерциальные системы отсчета. Принцип относительности.
- •§1.2. Кинематика поступательного и вращательного движений.
- •§1.3. Закон (кинематическое уравнение) движения
- •§1.4. Скорость
- •§1.5. Ускорение
- •§1.6. Равномерное и равнопеременное движения.
- •§ 1.7. Связь между линейными и угловыми кинематическими характеристиками.
- •§ 1.8. Краткие итоги главы 1.
- •§ 1.9. Примеры
- •Глава 2. Динамика
- •§2.1. Задача динамики. Динамические характеристики
- •§2.2. Виды сил.
- •§2.4. Момент инерции.
- •§2.5. Момент силы.
- •§2.6. Уравнение динамики
- •§2.7. Итоги главы 2.
- •П римеры
- •Глава 3. Законы сохранения в механике.
- •§ 3.1.Фундаментальный характер законов сохранения
- •§ 3.2. Закон сохранения импульса.
- •§3.3.. Работа силы. Мощность.
- •§ 3.4. Механическая энергия.
- •§ 3.5. Закон сохранения механической энергии
- •§ 3.6. Столкновения тел
- •§ 3.5. Закон сохранения момента импульса
- •§ 3.6. Итоги главы 3
- •Примеры
- •Глава 4. Элементы специальной теории относительности
- •§ 4.1. Закон сложения скоростей. Постулат о скорости света
- •§ 4.2. Релятивистское сокращение длины и замедление времени
- •§ 4.3. Релятивистская динамика
- •Примеры
- •Раздел 2. Электромагнетизм
- •Глава 5. Электростатика
- •§ 5.1.Электрический заряд. Закон Кулона.
- •§5.2. Электрическое поле. Напряженность.
- •§ 5.3. Теорема Гаусса.
- •§ 5.4. Потенциал и работа электростатического поля.
- •§ 5.5. Связь напряженности и потенциала электростатического поля.
- •§ 5.6. Электростатическое поле в веществе.
- •§ 5.7. Электроемкость. Конденсатор.
- •§ 5.8. Энергия электрического поля.
- •Глава 6. Постоянный электрический ток.
- •§ 6.1. Электрический ток: сила тока, плотность тока
- •§ 6.2. Механизм электропроводности
- •§ 6.3. Законы постоянного тока.
- •§ 6.4. Работа и мощность тока
- •Глава 7. Магнитное поле тока
- •§ 7.1 Магнитное взаимодействие. Магнитное поле
- •§ 7.2. Закон Био-Савара-Лапласа
- •§ 7.3. Вихревой характер магнитного поля.
- •§ 7.4. Действие магнитного поля на токи и движущиеся электрические заряды
- •§ 7.5. Магнитное поле в веществе
- •Глава 8. Явление электромагнитной индукции
- •§ 8.1. Основной закон электромагнитной индукции
- •§ 8.2. Самоиндукция и взаимная индукция
- •§ 8.3. Энергия магнитного поля
- •§ 8.4. Вихревое электрическое поле. Уравнения Максвелла
- •Раздел 3. Физика колебаний и волн
- •Глава 9. Свободные и вынужденные колебания
- •§ 9.1. Гармонический осциллятор
- •Подведем итоги:
- •§ 9.2. Примеры гармонических осцилляторов.
- •1) Физический маятник
- •§ 9.3. Затухающие колебания
- •§9.4. Вынужденные колебания. Резонанс.
- •Глава 10. Волны
- •§ 10.1.Упругие волны
- •§ 10.2. Электромагнитные волны
- •§ 10.3.Энергия волн
- •§ 10.4. Волны и передача информации
- •Глава 11. Волновая оптика
- •§ 11.1.Световая волна
- •§ 11.2. Интерференция. Когерентность.
- •§ 11.3.Способы наблюдения интерференции света
- •§ 11.4. Дифракция. Условия ее наблюдения. Принцип Гюйгенса - Френеля
- •§ 3.5. Метод зон Френеля.
- •§ 11.6. Дифракция на щели. Дифракционная решетка как спектральный прибор.
- •§ 11.7. Голография
- •§ 11.8. Поляризация света.
- •§ 11.9. Рис. 3.12 Получение и применение поляризованного света
Глава 8. Явление электромагнитной индукции
§ 8.1. Основной закон электромагнитной индукции
1. Проводник с током создает магнитное поле. Оказывается, и обратное верно: при определенных условиях магнитное поле создает (индуцирует) в проводнике электрический ток. Это и есть явление электромагнитной индукции, открытое в 1831 г. М.Фарадеем. Во время внесения в замкнутую проволочную катушку постоянного магнита или при выдвигании его из катушки по катушке шел ток, причем, его направление изменялось при изменении направления движения. Аналогичный результат получался, если постоянный магнит заменить электромагнитом, а также, если на неподвижный магнит надевать замкнутую катушку или снимать ее с него. Из этих и подобных им опытов был сделан вывод, что при любом изменении магнитного потока, сцепленного с проводящим замкнутым контуром, в этом контуре возникает ток. Такой ток получил название индукционного. Направленное движение зарядов в проводнике создается электродвижущей силой, так что при изменении сцепленного с контуром магнитного потока контур берет на себя роль источника тока. Возникающая в нем электродвижущая сила называется ЭДС индукции и. На основании опытов Ленц сформулировал правило, которое устанавливает направление индукционного тока и носит его имя: индукционный ток имеет такое направление, чтобы препятствовать причине своего возникновения. Это значит, что магнитное поле индукционного тока препятствует изменению внешнего магнитного потока, создающего индукционный ток. Математическое выражение этого явления называется основным законом электромагнитной индукции и имеет вид:
и=
(8.1.1)
Знак «минус» в формуле (8.1.1) есть выражение правила Ленца. Если контур представляет собой катушку из последовательно соединенных одинаковых витков, то такая ЭДС возникнет в каждом витке, и на концах катушки из N штук витков она составит и= N. Полный магнитный поток, сцепленный со всеми витками катушки, называют потокосцеплением
=NФ (8.1.2)
Для многосвязного контура, каким является катушка,
и=
(8.1.3)
2. Причиной изменения магнитного потока и возникновения в контуре ЭДС индукции может быть изменение со временем магнитного поля, площади контура или его ориентации в пространстве. Рассмотрим примеры технического применения явления электромагнитной индукции.
П
ример
1. Пусть контур площадью S
расположен в однородном магнитном
поле поперек силовых линий. С контуром
сцеплен магнитный поток Ф1=BS.
При изменении потока в контуре
возникает ЭДС, и в замкнутой цепи (ее
сопротивление R), куда
входит рассматриваемый контур, течет
ток силой
и переносит заряд dq=idt.
За время изменения магнитного потока
пройдет заряд q=
.
Если Ф2=0, то q=
.
Такой принцип действия используется в
приборах для измерения магнитной
индукции. При резком удалении датчика
из магнитного поля (или при повороте
его в поле на 1800, когда магнитный
поток изменяется вдвое) отклонение
стрелки указывает величину магнитной
индукции.
Пример 2. В однородном магнитном поле движется поперек силовых линий прямолинейный проводник длиной l (рис. 35). При своем движении он пересекает магнитный поток dФ=BdS=Bldt, так что и=Вl.. На концах проводника скапливаются разноименные электрические заряды, создающее электростатическое поле с напряженностью Е=и/l. Заметим, что, согласно правилу Ленца, на ближнем к нам конце окажется положительный заряд, а на дальнем – отрицательный. Подобное явление наблюдается на крыльях самолетов, так как в полете они пересекают силовые линии магнитного поля Земли. Для стекания этих зарядов на концах крыльев расположены металлические щеточки.
П
ример
3. В однородном магнитном
поле равномерно вращается с угловой
скоростью
плоская прямоугольная
рамка площадью S..
Ось вращения лежит в плоскости рамки и
перпендикулярна силовым линиям (рис.
36). Нормаль к рамке образует с силовыми
линиями угол
=
t.
Рамку пронизывает поток Ф=ВScos=
ВScos
t,
так что
и= ВS sin t. Рассмотренная рамка – модель генератора переменного тока. Если к ней присоединить нагрузку, то в цепи потечет переменный ток.