Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методы повышения продуктивности скважин.doc
Скачиваний:
73
Добавлен:
17.09.2019
Размер:
143.87 Кб
Скачать

1.3. Физические методы

К физическим методам воздействия на призабойную зону относятся тепловые обработки и вибровоздействия.

Целью тепловых обработок является удаление парафина и асфальто-смолистых веществ. Для этого применяют горячую нефть, пар, электронагреватели, термоакустическое воздействие, а также высокочастотную электромагнитоакустическую обработку.

При вибровоздействии призабойная зона пласта подвергается обработке пульсирующим давлением. Благодаря наличию жидкости в порах породы обрабатываемого пласта, по нему распространяются как искусственно создаваемые колебания, так и отраженные волны. Путем подбора частоты колебания давления можно добиться резонанса обоих видов волн, в результате чего возникнут нарушения в пористой среде, т.е. увеличится проницаемость пласта.

Методы повышения пластового давления и увеличения проницаемости пласта позволяют, главным образом, сокращать сроки разработки залежей за счет более интенсивных темпов отбора нефти и газа. Однако необходимо добиваться и наиболее полного извлечения нефти и газа из недр. Это достигается применением методов повышения нефте- и газоотдачи пластов.

Для повышения нефтеотдачи применяют следующие способы:

  • закачка в пласт воды, обработанной ПАВ;

  • нагнетания в пласт теплоносителя;

  • внутрипластовое горение;

  • вытеснение нефти растворами полимеров;

  • закачка в пласт углекислоты.

При закачке в нефтяной пласт воды, обработанной ПАВ, снижается поверхностное натяжение на границе нефть-вода, что способствует дроблению глобул нефти и образованию маловязкой эмульсии типа «нефть в воде», для перемещения которой необходимы меньшие перепады давления. Одновременно резко снижается и поверхностное натяжение на границе нефти с породой, благодаря чему она более полно вытесняется из пор и смывается с поверхности породы.

При вытеснении нефти водой нередки случаи, когда вследствие различия вязкостей жидкостей или разной проницаемости отдельных участков пласта имеет место опережающее продвижение вытесняющего агента по локальным зонам пласта. Это приводит к недостаточно полному вытеснению нефти. Для выравнивания фронта продвижение воды в пласт закачивают водо-растворимые полимеры.

Для загущения воды применяют различные водорастворимые полимеры, из которых наиболее широкое применение нашли полиакриламиды (ПАА). Они хорошо растворяются в воде и уже при концентрациях 0.01 ... 0.05 % придают ей вязкоупругие свойства, создает условия для более равномерного продвижения водонефтяного контакта и повышения конечной нефтеотдачи пласта.

Роль раствора полимеров могут выполнять также пены, приготовленные на аэрированной воде с добавкой 0.2 ... 1 % пенообразующих веществ. Вязкость пены в 5 ... 10 раз больше вязкости воды.

Нагнетание в пласт теплоносителя: Сущность тепловых методов состоит в том что наряду с гидродинамическим вытеснением повышается температура в залежи, способствуя существенному уменьшению вязкости нефти, увеличению ее подвижности, испарению легких фракций и др. Это позволяет применять данные методы для залежей высоковязкой смолистой нефти вплоть до битумов, залежей нефтей, обладающих неньютоновскими свойствами[1], а также залежей, пластовая температура которых равна или близка к температуре насыщения нефти парафином.

Аномалия вязкости в основном обусловлена образованием в жидкости более или менее устойчивой пространственной структуры. В нефтях пространственную структуру образовывают асфальтены, смолы и парафины. При снижении температуры ниже температуры насыщения растворенные парафины кристаллизуются и их кристаллы придают нефти аномальные (структурно-механические) свойства.

Существует большое количество различных видов тепловых методов, но в основе практически любого из них лежит одна из двух технологий воздействия на пласт: ВГВ (воздействие горячей водой); ПТВ (паротепловое воздействие). Так как в рамках данной статьи представляет интерес именно паротепловой метод, далее будем рассматривать именно его.

Первые работы по закачке пара в пласт относятся к 1932 г. [3]. Лучшими теплоносителями и вытеснителями оказались горячая вода и водяной пар при высоком давлении. При кипении из воды выносятся пузырьки пара вместе с мельчайшими капельками влаги, смесь которых называют насыщенным паром с различной степенью сухости xп (отношение массы сухой паровой фазы к массе смеси). При 1 > xп > 0 имеем влажный насыщенный пар, а при xп = 1 — сухой насыщенный пар (неустойчивое мгновенное состояние).

Перегретым называют пар, который при одинаковом давлении с насыщенным имеет температуру больше температуры кипения tкип. При охлаждении перегретого пара при постоянном давлении выделяется теплота перегрева, затем теплота парообразования (конденсации) и дальше частично теплота жидкости, т. е. получаются насыщенный пар и за ним горячая вода.

Критическое состояние воды (критическая точка), которое характеризуется исчезновением различия между жидкостью и паром, наступает при значениях давления МПа и температуры °С, при этом удельный объем м3/кг и плотность м3/кг [3].

Вода и нефть практически взаимонерастворимы в атмосферных условиях. Неограниченная растворимость нефтей в жидкой воде, экспериментально установленная в 1960 г., достигается при температурах 320–340 °С и давлениях 16–22 МПа. Причем вода в отличие от других растворителей при снижении температуры водонефтяного раствора до атмосферной полностью выделяет всю растворенную в ней нефть. Критическая температура растворения снижается в пористой среде на 10–20 °С, а при добавке к воде углекислого газа в объемном соотношении 1:5 (в атмосферных условиях) — до 250 °С. Сопоставительными лабораторными опытами вытеснения нефти водой с поинтервальным ступенчатым повышением температуры закачиваемой воды установлено, что суммарный коэффициент вытеснения повышается до 0,67 при температуре 250–300 °С и до 0,97 при температуре 300–310 °С и давлении 18–20 МПа. Полное вытеснение убеждает, что происходит взаимное смешение воды и нефти.

Насыщенный водяной пар, как терморастворитель нефти действует во всей области его существования в интервале температур 100–370 °С и давлений от атмосферного до 22 МПа. Однако коэффициент охвата пласта для горячей воды выше, чем для пара. Пар как маловязкий рабочий агент обычно движется у кровли пласта. Охват паром по толщине не превышает 0,4, по площади составляет 0,5–0,9. Средний коэффициент нефтеотдачи при этом достигает 0,3–0,35.

Закачка в пласт теплоносителя и терморастворителя может осуществляться с нагревом его на поверхности или на забое скважины; на поверхности с дополнительным подогревом на забое скважины. Максимальная величина охлаждения приближается к значению , где глубина точки инверсии температурной кривой [3]. Увеличить можно уменьшением или повышением т. е. увеличением расхода q и продолжительности закачки t. На заданной глубине возрастает, через 50–100 суток практически стабилизируется и становится меньше примерно на 6, 10 и 13 % при глубине залегания соответственно 500, 1000 и 1500 м. Приблизительно такие же значения принимает и величина теплопотерь. При закачке горячей воды ее приходится нагревать на поверхности на 30–50 °С (в зависимости от глубины) выше проектной забойной температуры. Температура влажного пара возрастает с глубиной и становится выше на 30–40 °С. Так как температура влажного пара зависит только от давления, то рост давления с глубиной за счет массы теплоносителя с учетом гидравлических потерь приводит к увеличению температуры. При этом все теплопотери в стволе компенсируются постепенной конденсацией пара (теплотой конденсации), т. е. возрастанием его влажности.

С увеличением глубины пар может превратиться в горячую воду. При движении теплоносителя по пласту также возможны потери теплоты через кровлю и подошву пласта. Для уменьшения всех теплопотерь выбирают нефтяные пласты с достаточно большой толщиной (более 6 м), применяют площадные сетки скважин с расстоянием до 100–200 м между нагнетательными и добывающими скважинами, перфорируют скважины в средней части пласта, обеспечивают максимально возможный темп нагнетания теплоносителя (пара 100–250 т/сут и более), теплоизолируют трубы, теплогенератор максимально приближают к скважинам и др.

Теплопотери в стволе скважины ограничивают область применения методов закачки пара и горячей воды на глубины залегания пласта до 700–1500 м, а при закачке воды в качестве терморастворителя глубина должна быть больше 1700–1800 м из-за необходимости создания высокого давления. Теплоноситель закачивают в виде нагретой оторочки размером более 0,3–0,4 объема обрабатываемого пласта, а затем форсированно продвигают ее по пласту холодной водой, которая нагревается теплотой, аккумулированной в пласте за фронтом вытеснения.[5,c.17]

Метод внутрипластового горения: Закачка теплоносителей сопряжена с большими потерями тепла в наземных коммуникациях. Так, в поверхностных паропроводных теряется 0,35…3,5 млн.кДж/сут на каждые 100 м трубопровода, а в скважине – 1,7 млн.кДж/сут на каждые 100 м длины НКТ.

Поэтому более эффективным представляется источник тепла, расположенный непосредственно в пласте. Таким источником является очаг внутрипластового горения.

Метод заключается в следующем. На забое нагнетательной скважины с помощью горелок различной конструкции создается высокая температура, вызывающая загорание нефти в пласте. Для поддержания горения в пласт через эту же скважину подают окислитель-воздух или кислородосодержащую смесь в объемах, обеспечивающих горение. Горение нефти вызывает повышение температуры до 400оС и улучшает процесс вытеснения нефти.

Факт горения представлен несколькими зонами, т.е. при внутрипластовом горении (ВГ) действуют одновременно все известные методы воздействия на пласт: горячая вода, пар, растворитель, газы из легких углеводородов.

Физический процесс горения представляется таким образом. После поджога в пласте происходит процесс термической перегонки нефти, продукты которой – коксоподобные остатки нефти – являются топливом, поддерживающим очаг горения. Зона горения перемещается от нагнетательной скважины вглубь в радиальном направлении. Образующийся тепловой фронт с температурой 450…500оС вызывает следующие процессы в пласте. 1. Переход в газовую фазу легких компонентов нефти. 2. Расщепление (крекинг) некоторых углеводородов. 3. Горение коксоподобного остатка. 4. Плавление парафина и асфальтенов в порах породы. 5. Переход в паровую фазу платсовой воды, находящейся перед фронтом. 6. Уменьшение вязкости нефти перед фронтом и смешивание выделяющихся легких фракций нефти и газов с основной массой. 7. Конденсация продуктов перегонки нефти и образование подвижной зоны повышенной нефтенасыщенности перед фронтом горения. 8. Образование сухой выгоревшей массы пористой породы за фронтом горения.

В пласте образуются несколько зон: I – выгоревшая зона со следами несгоревшей нефти или кокса; II – зона горения, в которой максимальнаятемпература достигает 300…500оС; III – зона испарения, в которой происходит разгонка нефти на фракции и крекинг нефти, пластовая и связанные воды превращаются в пар; IV – зона конденсации, в которой происходит конденсация углеводородов и паров, нефть и вода проталкиваются к добывающим скважинам газами, образовавшимися в результате горения СО2, СО, N; V – зона увеличенной насыщенности; VI – зона увеличенной нефтенасыщенности, в которую перемещается нефть из предыдущих зон, температура в которой близка к первоначальной; VII – невозмущенная зона, в которой пластовая т1мпература остается первоначальной.

Экспериментальные работы позволили установить следующие количественные данные: 1) на горение расходуется до 15% запасов пластовой нефти; 2) горение ведется при температуре около 375С, на что требуется 20…40 кг кокса на 1 куб.м. породы; 3) для сжигания 1 кг кокса требуется 11,3 куб.м., воздуха при коэффициенте его использования 0,7…0,9.

Например, на залежи Павлона Гора за 66 суток было закачено 600 тыс.куб.м. воздуха.

Материальный баланс процесса ВГ представляется так:

Iн = Iнд + Iнг + Iуг

где Iн – количество нефти до процесса; Iнд - количество добытой нефти в регультате ВГ; Iнг – количество сгоревшей нефти; Iуг – количество нефти, превратившейся в углеводородный газ.

При вытеснении нефти из пласта растворителями в качестве вытесняющей фазы используются растворимые в нефти сжиженные пропан, бутан, смесь пропана с бутаном. В пласте они смешиваются с нефтью, уменьшая ее вязкость, что ведет к увеличению скорости фильтрации.

При закачке в пласт углекислоты Углекислый газ СО2, закачиваемый в пласт в жидком виде, смешиваясь в нефтью, уменьшает ее вязкость, увеличивает подвижность, снижает поверхностное натяжение на границе «нефть-порода» Жидкая углекислота экстрагирует из нефти легкие фракции, создавая активно-действующий на породу вал из смеси СО2, и углеводородов и способствующий лучшему отмыванию нефти из пласта. Установлено и химическое взаимодействие СО с породой, ведущее к увеличению ее проницаемости.

По данным БашНИПИнефть нефтеотдача заметно увеличивается после применения СО концентрацией 4…5% (по массе).

Свойства СО2,: бесцветный газ, относительная плотность 1,529 кг/куб.м., критическая температура 31,1 СО2; критическое давление 7,29 Мпа; плотность 468 кг/куб/м; при Т=20оС Р = 5,85 Мпа превращается в бесцветную жидкость с плотностью 770 кг/куб.м. Хорошо растворяется в воде и нефти, снижая ее вязкость на 10…500%.

В настоящее время реализовано несколько технологических схем закачки углекислоты в пласт. Вот несколько из них: закачка карбонизированной воды, закачка углекислого газа, создание оторочки из СО с последующим вытеснением водой, углеводородами или их смесью.

По данным исследований нефтеотдача при применении углекислоты значительно возрастает при увеличении оторочки до 10% порового объема пласта. Источниками СО2 являются обработанные газы тепловых установок (11…13%) побочная продукция химических производств (до 99%), месторождения нефтяных газов (до 20%).

Закачка СО2 впервые была осуществлена на Александровской площади Туймазинского месторождения в 1967 г. На 1.01.1975 г. в пласт было закачено 252,5 тыс.куб.м. карбонизированной воды с концентрацией СО2 – 1,7%. Израсходовано 4,1 тыс.т. углекислоты. Установлено увеличение охвата пласта заводнением по мощности на 30%, приемистость нагнетательных увеличивается на 10…40%.

Возврат углекислоты в виде добытой жидкости составил 238,8 т (5,7% от закачанной в пласт).

Крупномасштабные работы по закачке СО2 ведутся на ряде месторождений США. Так, на месторождении Форд-Джерелдин с 1981 г. ведется закачка СО2 в объеме 570 тыс.куб.м./сут через 98 нефтяных скважин по пятиточечной сетке.

Нефть добывают из 154 скважин. Характеристика месторождения: глубина пласта 815 м, пористость 23%, толщина 7 м, проницаемость 64-10 кв.мкм, вязкость нефти 1,4 Мпа-с, плотность 815 кг/куб.м., пластовая температура 28С. Давление закачки 13,6 Мпа, стоимость СО2 46..53 долл. За 1000 куб.м. Эффективность применения СО2 оценивается дополнительно добытой нефтью, величина которой различна для разных районов и составляет до 12% от начальных геологических запасов.