Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
механика 16.doc
Скачиваний:
3
Добавлен:
14.07.2019
Размер:
178.69 Кб
Скачать

МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ГОРНЫЙ ИНСТИТУТ (ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ)

ОТЧЕТ

по лабораторной работе №16

ИЗУЧЕНИЕ УПРУГОГО И НЕУПРУГОГО СТОЛКНОВЕНИЯ ТЕЛ.

Выполнила студентка группы РГГ-11 Логинова Наталья

Проверил : ассистент Черняев Антон Валентинович

Санкт-Петербург

2011

1.Цель работы – получить представление об упругих и неупругих столкновениях , изучить законы сохранения импульса и энергии.

2.Краткое теоретическое содержание.

Столкновение (удар, соударение) – модель взаимодействия двух тел, длительность которого равна нулю (мгновенное событие). Применяется для описания реальных взаимодействий, длительностью которых можно пренебречь в условиях данной задачи.

Существуют два предельных вида удара:

Абсолютно упругим называется такой удар, после которого форма и размеры тел восстанавливаются полностью до состояния, предшествующего столкновению. При этом ударе механическая энергия тел не переходит в другие, немеханические виды энергии.

Абсолютно неупругий удар – столкновение двух тел, после которого форма и размеры тел не восстанавливаются. При этом ударе кинетическая энергия полностью или частично превращается во внутреннюю энергию, приводя к повышению температуры тел. После удара столкнувшиеся тела либо движутся вместе с одинаковой скоростью, либо покоятся. При абсолютно неупругом ударе выполняется лишь закон сохранения импульса.

Абсолютно неупругий удар.

m1, m2 – массы шаров.

- скорости шаров до удара.

- скорость обоих шаров после удара.

Закон сохранения импульса.

(1)

(2)

Переходя к скалярному выражению получим

(3)

Здесь знак (+) соответствует движению тел в одном направлении, а знак (-) – движению тел навстречу друг другу.

Количество механической энергии перешедшей во внутреннюю энергию (тепло) равно разности энергий до и после удара:

(4)

Ч астный случай, когда ударяемое тело (m2) неподвижно (v20=0), тогда из формулы (3) следует:

(5)

Пусть масса ударяемого тела велика, (m2 >>m1), тогда из (4) получим:

(6)

То есть, в этом случае почти вся кинетическая энергия переходит в тепло (в кузнице наковальня имеет большую массу).

(В случае m2<< m1 (при забивании гвоздя m2 молотком m1 в доску) из формулы (5) получаем:

(7)

То есть, скорость молотка почти полностью передается гвоздю. Тогда из формулы (4) получаем, что Q0, то есть, кинетическая энергия молотка переходит в кинетическую энергию системы гвоздь-молоток (которая затем затрачивается на преодоление сопротивления доски).

В случае, когда второе тело неподвижно (v20=0) из формул (4) и (5) можно получить следующую зависимость количества тепла Q от отношения масс m2/m1

8)

Абсолютно упругий удар.

- скорости шаров до удара,

- скорости шаров после удара,

Запишем уравнения по закону сохранения импульса и закону сохранения энергии.

(9)

(10)

Решая систему этих двух уравнений можно получить следующие формулы для скоростей шаров после удара

(11)

(12)

Рассмотрим частные случаи.

  1. Соударение одинаковых шаров , m1=m2.

Из формул (11) и (12) получим в этом случае:

То есть, шары при соударении обмениваются скоростями.

Если один из шаров неподвижен, например v20=0, то после удара он будет двигаться со скоростью равной скорости первого шара (и в том же направлении), а первый шар остановится.

2). Удар шара о массивную стенку, m2>>m1.

Из формул (11) и (12) получим в этом случае:

Если один из шаров неподвижен, например v20=0, то после удара он будет двигаться со скоростью равной скорости первого шара (и в том же направлении), а первый шар остановится.

2). Удар шара о массивную стенку, m2>>m1.

Из формул (11) и (12) получим в этом случае:

,

Скорость стенки остаётся неизменной. Если стена неподвижна, (v20=0), то , то есть, ударившийся о стену шарик отскочит обратно практически с той же скоростью.

р10-импульс левой тележки до столкновения

р1-имнульс левой тележки после столкновения

р2-импульс правой тележки после столкновения

W10-кинетическая энергия левой тележки до столкновения

W1-кинетическая энергия левой тележки после столкновения

W2-кинетическая энергия правой тележки после столкновения

- скорости шаров до удара

- скорости шаров после удара

m1, m2 – массы шаров

Qэксп- количество тепла,выделившееся при ударе