Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТЭР 1 блок отв.docx
Скачиваний:
4
Добавлен:
17.09.2019
Размер:
1.09 Mб
Скачать

8 Роль гаэс в Энергосистеме

Я в инете ничего толкового не нашел. Отвечу сам.

ГАЭС позволяет решить 2 задачи:

Баланс генерации и потребление.

Т.е. потреблять избыточную мощность энергонакопители в часы минимальных нагрузок и выдавать максимальную мощьность в часы загруженности.

Топливно-энергетические ресурсы

 

 

9 История развития человечества теснейшим образом связана с получением и использованием энергии. Издавна в качестве основных источников энергии — энергетических ресурсов, или энергоресурсов,— использовались дрова, торф, древесный уголь, вода, ветер. Первобытный человек, сжигая в костре сучья, хворост, обломки деревьев, мох, добывал таким образом тепло (или тепловую энергию) для приготовления еды и обогрева жилища. Уже в древнем мире люди использовали тепло для изготовления из меди, бронзы, железа и других металлов предметов быта, инструментов, орудий труда,   различных   приспособлений,   оружия.

С древнейших времен известны также уголь и нефть — вещества, дающие при сжигании большое количество теплоты. Использовались также некоторые виды сланцев как природного, так и искусственного происхождения. Но только те из них, которые при сжигании выделяют значительное количество теплоты, широко распространены в природе, добываются промышленным способом, получили название — топливо. Такими веществами являются нефть и нефтепродукты (например, керосин, бензин, мазут, дизельное топливо), уголь, природный горючий газ, древесина и растительные отходы (солома, лузга и т. п.), а также торф, горючие сланцы. В наше время слово «топливо» часто применяют к веществам, используемым в ядерных реакторах на атомных электростанциях,— ядерное топливо, в ракетных двигателях — ракетное топливо.

Свойства топлива зависят главным образом от его химического состава. Основным элементом любого топлива природного (органического) происхождения является углерод (содержание его составляет от 30 до 85% массы топлива). В состав топлива в различных пропорциях входят также водород, кислород, азот, сера, зола, вода.

ВСПОЛНЯЕМЫ И НЕВОСПОЛНЯЕМЫЕ ТЭР

К  восполняемым   энергоресурсам   относят энергию: Солнца;  мирового океана в виде энергии приливов и отливов, энергии волн; рек; ветра; морских течений; соленую; морских водорослей; вырабатываемую из биомассы; водостоков; твердых бытовых отходов; геотермальных источников. Недостатком возобновляемых источников энергии является низкая степень ее концентрации. Но это в значительной степени компенсируется широким распространением, относительно высокой экологической частотой и их практической неисчерпаемостью. Такие источники наиболее рационально использовать непосредственно вблизи потребителя без передачи энергии на расстояние. Энергетика, работающая на этих источниках, использует потоки энергии, уже существующие в окружающем пространстве, перераспределяет, но не нарушает их общий баланс.

К невосполняемым энергетическим ресурсам относят: - каменный    уголь,  запасы  которого  в  мире  оцениваются  в 10-12 трлн т; Т -нефть, запасы которой распределены крайне неравномерно на Земле: I на Ближнем и Среднем Востоке - 67, в Африке - 12,5, Юго-Восточной Азии I и Дальнем Востоке - 3, Северной Америке - 9, Центральной и Южной Америке - 5,5, Западной Европе - 3 %. По уровню добычи нефти Россия занимает 3-е место в мире, уступая только Саудовской Аравии и США. В 1999 г.  ее добыто 305 млн т.

Условное топливо — Химическая или ядерная энергия топлива переводится в различные виды энергии, и чаще всего через преобразование выделяемого при реакциях тепла тепловыми двигателями.

Основной показатель топлива — теплотворная способность (теплота сгорания). Для целей сравнения видов топлива введено понятие условного топлива.

Возобновляемые ресурсы — природные ресурсы, запасы которых или восстанавливаются быстрее, чем используются, или не зависят от того, используются они или нет. Это довольно расплывчатое определение, и часто в понятие «возобновляемые ресурсы» включают не совсем то, что это словосочетание обозначает. Термин был введён в обращение как противопоставление понятию «невозобновляемые ресурсы» (ресурсы, запасы которых могут быть исчерпаны уже в ближайшее время при существующих темпах использования).

Многие ресурсы, которые относят к возобновляемым, на самом деле не восстанавливаются и когда-нибудь будут исчерпаны. В качестве примера можно привести солнечную энергию. С другой стороны, при достаточном развитии технологии, многие ресурсы, которые традиционно считаются невозобновляемыми, могут быть восстановлены. Например, металлы можно использовать повторно. Ведутся исследования по переработке изделий изпластика.

10 Возобновляемые источники энергии (ВИЭ) — в современной мировой практике к ВИЭ относят: гидро, солнечную, ветровую, геотермальную, гидравлическую энергии, энергию морских течений, волн, приливов, температурного градиента морской воды, разности температур между воздушной массой и океаном, тепла Земли, биомассу животного, растительного и бытового происхождения.

Существуют различные мнения о том, к какому типу ресурсов следует относить ядерное топливо. Запасы ядерного топлива с учётом возможности его воспроизводства в реакторах-размножителях, огромны, его может хватить на тысячи лет. Несмотря на это его обычно причисляют к невозобновляемым ресурсам. Основным аргументом для этого является высокий риск для экологии, связанный с использованием ядерной энергии.

  • Питьевая вода

  • Топливо, получаемое в результате переработки растений: спирт, биогаз, биодизель

  • Древесина

  • Бумага

11) Энергетика возобновляемых источников. Геотермальная и приливная энергетика.

Возобновляемая или регенеративная энергия — энергия из источников, которые по человеческим масштабам являются неисчерпаемыми. Основной принцип использования возобновляемой энергии заключается в её извлечении из постоянно происходящих в окружающей среде процессов и предоставлении для технического применения.Возобновляемую энергию получают из природных ресурсов — таких как солнечный свет, ветер, дождь, приливы и геотермальная теплота — которые являются возобновляемыми (пополняются естественным путем).

Геотермальная энергетика — направление энергетики, основанное на производстве электрической и тепловой энергии за счёт тепловой энергии, содержащейся в недрах земли, на геотермальных станциях. Обычно относится к альтернативным источникам энергии, использующим возобновляемые энергетические ресурсы. В вулканических районах циркулирующая вода перегревается выше температур кипения на относительно небольших глубинах и по трещинам поднимается к поверхности, иногда проявляя себя в виде гейзеров. Доступ к подземным тёплым водам возможен при помощи глубинного бурения скважин. Более чем такие паротермы распространены сухие высокотемпературные породы, энергия которых доступна при помощи закачки и последующего отбора из них перегретой воды. Высокие горизонты пород с температурой менее 100 °C распространены и на множестве геологически малоактивных территорий, потому наиболее перспективным считается использование геотерм в качестве источника тепла. Хозяйственное применение геотермальных источников распространено в Исландии и Новой Зеландии, Италии и Франции, Литве, Мексике, Никарагуа, Коста-Рике, Филиппинах, Индонезии, Китае, Японии, Кении. Геотермальная энергия может быть использована двумя основными способами —для выработки электроэнергии и для обогрева домов, учреждений и промышленных предприятии. Применение геотермальных вод не может рассматриваться как экологически чистое потому, что пар часто сопровождается газообразными выбросами, включая сероводород и радон-оба считаются опасными. На геотермальных станциях пар, вщающий турбину, должен быть конденсирован, что требует источника охлаждающей воды, точно так же как этого требуют электростанции на угле или ядерном топливе. В результате сброса как охлаждающей, так и конденсационной горячей воды возможно тепловое загрязнение среды. Кроме того, там, где смесь воды и пара извлекается из земли для электростанций, работающих на влажном паре, и там, где горячая вода извлекается для станций с бинарным циклом, воду необходимо удалять. Запасы геотермальной энергии составляют 200 ГВт. Геотермальные ресурсы распределены неравномерно, и основная их часть сосредоточена в районе Тихого океана. В России геотермальные источники экономически расположены невыгодно. Камчатка, Сахалин и Курильские острова отличаются слабой инфраструктурой, высокой сейсмичностью, малонаселенностью, сложным рельефом местности. Общие запасы этого вида энергии в России оцениваются в 2000 МВт. В настоящее время в России действует Паужетская ГеоТЭС на Камчатке мощностью 11 МВт. Основное направление развития геотермальной энергетики — отбор теплоты не только термальных вод, но и водовмещающих горных пород путем закачки отработанной воды в пласты, преобразование глубинной теплоты в электрическую энергию. Такое использование глубинной теплоты обеспечит экологическую безопасность технологии ее использования.

Приливная энергетика- Существуют приливные электростанции, в которых используется перепад уровней воды, образующийся во время прилива и отлива. Для этого отделяют прибрежный бассейн невысокой плотиной, которая задерживает приливную воду при отливе. Затем воду выпускают, и она вращает гидротурбины. Как известно, морские приливы и отливы - следствие воздействия на Землю (на ее водную сферу - океаны и моря) лунного (главным образом) и солнечного притяжения, а также воздействия центробежных сил, образующихся в результате вращения систем Земля - Луна и Земля - Солнце.Приливы и отливы происходят два раза в сутки. Максимальное поднятие воды, именуемое полной водой, над минимальным опусканием уровня воды - малая вода, составляет в открытом океане около 1 м. Но в зависимости от очертания береговой линии, а также географической широты, глубины моря вблизи суши и некоторых других факторов величина прилива может быть гораздо больше. Максимальная величина разности уровней моря во время прилива и отлива обнаружена в некоторых местах Атлантического побережья Канады, где она достигает 18 м. Отмечены высокие уровни прилива в некоторых места Ла-Манша (до 15 м), Охотского моря (до 13 м), Белого моря (до 10 м), Баренцева моря (до 10 м). Считается, что для создания приливной электростанции разность уровней во время прилива и отлива должна быть не менее 10 м.К сожалению, таких мест на земном шаре очень мало - менее 30. Поэтому приливные электростанции не могут занять сколько-нибудь заметного места в энергетике.Приливные электростанции могут быть ценным энергетическим подспорьем местного характера, но на Земле не так много подходящих мест для их строительства, чтобы они могли изменить общую энергетическую ситуацию.

12) Солнечная энергетика России.

Солнечная энергетика — направление нетрадиционной энергетики, основанное на непосредственном использовании солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует неисчерпаемый источник энергии[1] и является экологически чистой, то есть не производящей вредных отходов[2]. Производство энергии с помощью солнечных электростанций хорошо согласовывается с концепцией распределённого производства энергии.

Достоинства : 1)Общедоступность и неисчерпаемость источника.2)Теоретически, полная безопасность для окружающей среды, хотя существует вероятность того, что повсеместное внедрение солнечной энергетики может изменить альбедо (характеристику отражательной (рассеивающей) способности) земной поверхности и привести к изменению климата (однако при современном уровне потребления энергии это крайне маловероятно).

Недостатки: 1)Зависимость от погоды и времени суток.,2)Как следствие необходимость аккумуляции энергии, 3)Высокая стоимость конструкции, 4)Необходимость периодической очистки отражающей поверхности от пыли, 5)Нагрев атмосферы над электростанцией.

Россия, а точнее Советский союз – родина солнечной энергетики, первые солнечные элементы были разработаны специально для космических аппаратов в Институте им. Иоффе. Научная база сохранилась и активно развивается и в настоящее время: тот же Институт им. Иоффе.На оценку потенциала отрасли солнечной энергетики влияют несколько факторов, среди которых можно выделить природный и научный потенциал, а также государственную поддержку отрасли.Хотелось бы отметить, что распространенное мнение по поводу того, что в России нет природных условий для развития солнечной энергетики по причине малого количества солнечных дней в году, не соответствует действительности. С точки зрения природного потенциала и ресурса солнечной инсоляции (уровень солнечной энергии приходящейся на 1 кв. м земной поверхности), часть территорий России соответствует тем странам, где солнечная энергетика развивается бурными темпами (Германия, Италия, Испания). Южные территории нашей страны, регионы Забайкалья и Дальнего Востока, обладают большим потенциалом солнечной энергетики, способным обеспечить России ведущие позиции в мировой отрасли ВИЭ и в то же время решить текущие задачи по энергоснабжению труднодоступных и изолированных территорий. Поэтому с точки зрения природного потенциала здесь, безусловно, нет никаких ограничений. Однако доля ВИЭ в общем энергобалансе России в настоящее время не превышает 0,5%. Данный показатель в отдельных странах (Германия, Дания) уже превышает 20%. Для полноценного развития научного потенциала и отрасли солнечной энергетики помимо природных условий нужна сильная государственная поддержка, которая в России почти полностью отсутствует. Комплексное развитие инновационного сектора возобновляемой энергетики и введение в эксплуатацию мощностей солнечной генерации в нашей стране в основном сдерживает отсутствие нормативно-правовой базы. К концу 2010 года на мировом рынке появились серийные солнечные панели с КПД 39,2 %. Спрос на солнечную энергетику стимулируется правительственными программами в странах, которые стремятся уменьшить свою зависимость от нефти и сократить влияние на окружающую среду. В России такие программы пока не работают, солнечная энергетика в РФ практически отсутствует. Россия не упоминается ни в одном из аналитических обзоров ООН, касающихся состояния фотовольтаики в мире.

13) Ветроэнергетика России

Ветроэнергетика — отрасль энергетики, специализирующаяся на преобразовании кинетической энергии воздушных масс в атмосфере в электрическую, механическую, тепловую или в любую другую форму энергии, удобную для использования в народном хозяйстве. Такое преобразование может осуществляться такими агрегатами, как ветрогенератор (для получения электрической энергии), ветряная мельница (для преобразования в механическую энергию), парус (для использования в транспорте) и другими.Энергию ветра относят к возобновляемым видам энергии, так как она является следствием деятельности солнца. Ветроэнергетика является бурно развивающейся отраслью, так в конце 2010 года общая установленная мощность всех ветрогенераторов составила 196,6 гигаватт. В том же году количество электрической энергии, произведённой всеми ветрогенераторами мира, составило 430 тераватт-часов (2,5 % всей произведённой человечеством электрической энергии). Некоторые страны особенно интенсивно развивают ветроэнергетику, в частности, на 2009 год в Дании с помощью ветрогенераторов производится 20 % всего электричества, в Португалии — 16 %, в Ирландии — 14 %,в Испании — 13 % и в Германии — 8 %. В мае 2009 года 80 стран мира использовали ветроэнергетику на коммерческой основе.

С использованием возобновляемых источников энергии в России ежегодно вырабатывается не более 8,5 млрд. кВтч электрической энергии, без учета гидроэлектростанций установленной мощностью более 25 МВт, что составляет менее 1% совокупного объема. За несколько лет до финансового кризиса в России стала создаваться нормативно правовая база развития рынка ветроэнергетических установок. Первым шагом в вопросе законодательного регулирования отрасли стало принятие в конце 2007 года поправок к Федеральному закону «Об электроэнергетике», заложивших рамочные основы развития отрасли. Это событие способствовало как формированию институциональных условий функционирования рынка, так и повышению инвестиционной привлекательности отрасли.Суммарная мощность всех ветроэнергетических установок России составила в 2009 году только 17-18 МВт (столько в мире устанавливается за 6 часов) или 0,008% от электрогенерирующих мощностей РФ (220 ГВт).По экспертным оценкам, технический потенциал (под потенциалом отрасли нами понимается средний годовой объем энергии, содержащийся в данном виде энергоресурса при полном ее превращении в полезно используемую энергию) ветровой энергии России оценивается свыше 6000 млрд. кВтч/год. Экономический потенциал составляет примерно 31 млрд. кВтч/год. Россия — одна из самых богатых в этом отношении стран — самая длинная на Земле береговая линия, обилие ровных безлесных пространств, большие акватории внутренних рек, озер и морей — все это наиболее благоприятные места для размещения ветропарков.Важность развития ветроэнергетики в нашей стране определяется тем, что 70% территории России, где проживает 10% населения, находится в зоне децентрализованного энергоснабжения, которая практически совпадают с зоной потенциальных ветроресурсов (Камчатка, Магаданская область, Чукотка, Сахалин, Якутия, Бурятия, Таймыр и др.). Внедрение новых ветроэнергетических мощностей происходит в России достаточно медленными темпами: на конец 2005 года их было — 14 МВт, 2006 — 15,5 МВт, 2007 — 16,5 МВт. В среднем темпы прироста составляют 8% в год — это один из самых низких показателей в мире, в Китае, для сравнения, он составляет ~ 60%, США ~ 30%, Испании ~ 20%. К настоящему моменту в России представлено около 10 крупных ветропарков, на долю которых приходится около 90% суммарной мощности. Кроме того функционирует около 1600 малых ветроэнергетических установок, мощностью от 0,1 до 30 кВт. Стоит отметить, что установка практически всех ветропарков относится к 2002—2003 годам. В последние же годы, увеличение мощностей происходит в основном за счет маломощных индивидуальных энергосистем, прирост составил 250 ветроэнергетических установок мощностью от 1 кВт до 5 кВт.

14) Биоэнергетика — производство энергии из биотоплива(топливо из биологического сырья, получаемое, как правило, в результате переработки биологических отходов, а именно вещества (или смеси веществ), признанные непригодными для дальнейшего использования в рамках имеющихся технологий, или после бытового использования продукции.) различных видов. Название данной отрасли произошло от английского слова bioenergy, которое давно используется как энергетический термин. Биоэнергетикой считается производство энергии как из твердых видов биотоплива (щепа, гранулы (пеллеты) из древесины, лузги, соломы и т. п., брикеты), так и биогаза, и жидкого биотоплива различного происхождения. Понятие «биоэнергетика» применяется как в электроэнергетике, так и в теплоэнергетике и совместном производстве тепла и электричества. В России понятие «биоэнергетика» в энергетическом смысле стали использовать с появлением первых биотопливных предприятий, ориентированных на экспорт биотоплива в Европейский Союз. Именно там биотопливо используется на тепло-электростанциях для получения тепла и электричества. В России существует несколько проектов производства тепла и электричества из биотоплива (ТЭС), однако мощности этих энергоустановок невелики и не сравнимы с мощностями атомной индустрии. В теплоэнергетике биотопливо получает все большее и большее развитие. Ряд областей наращивают объемы производства биотоплива и переводят котельные на биотопливо. Например, Вологодская область намерена полностью использовать биотопливо в котельных региона в ближайшее время. Здесь также есть проекты по биоэнергетике для получения тепла и электричества.

Биоэнергетика несет в себе новые технологии, которые потребуют для массового внедрения в энергетический баланс новых видов топлив, серьезной политической и экономической поддержки со стороны государства. Внедрение достижений биоэнергетических технологий зависит от решения задач, связанных с интенсификацией процессов конверсии органического сырья в топливо и крупномасштабным производством самой биомассы. Биомасса, аккумулирующая в себе солнечную энергию в форме углеводородов растительного происхождения, служит исходным сырьем для выработки биотоплива в твердом, жидком и газообразном виде в зависимости от технологии переработки. Земли сельскохозяйственного назначения в России составляют - 402,6 млн га, в том числе сельскохозяйственные угодья - 220,6 млн га, из них пашни 121,6 млн га. С 1990 года не используется до 40 млн га пашни и более 20 млн. га лугов и пастбищ - это резерв для производства биомассы, как на корма, продовольствие, так и для биоэнергетики. Некоторые «умные головы» предлагают эти территории оставить лесам - меньше проблем с людьми, ранее заселившимися здесь. Стабильной сырьевой базой для биоэнергетики будут и биосодержащие отходы. Если взять все отходы, генерируемые российским агропромышленным комплексом, то их ежегодное производство составляет 773 млн т. Перерабатывая, можно получить около 66 млрд м3 биогаза и около 112 млн т высококачественных удобрений. Биотехнологии также занимают прочную позицию в производстве продуктов, кормов, удобрений и раскрывают уникальные возможности промышленного производства биотоплив, как газообразных, так и жидких. В зависимости от концентрации биоэнергетического сырья на территориях следует готовить проекты по его переработке. Это могут быть небольшие биоэнергетические установки индивидуального назначения или более крупные для предприятий, для сельских и пригородных посёлков.

15) Нефть, уголь и природный газ. ТЭК и его составляющие. ОПЕК, ОЭСР

15.1 Нефть

Накопленная мировая добыча нефтей по состоянию на 01.01.10 г. оценивается в 140,0 млрд. т. При этом весьма важно, что в последние 5 лет (начиная с 2005 г.) она стала близкой к 4,0 млрд. т/год и растет незначительно, несмотря на высокий уровень мировых цен. При этом в накопленной добыче ведущую роль сыграли традиционные нефтедобывающие страны. На долю стран Ближнего и Среднего Востока приходится около 28%, Северной Америки – 24% и стран СНГ – 15% . Доля 10 стран, достигших наибольшего уровня извлечения нефти из недр, сегодня, достигает 65% от общей мировой годовой ее добычи (>2,5 млрд. т/год). Эти же страны обладают и наибольшими разведанными доказанными (proved) запасами нефти. Однако приведенные ниже данные об их уровнях добычи и разведанных запасах свидетельствуют о широком диапазоне колебаний отношения – разведанные запасы/годовая добыча. Это отношение прямо не отражает обеспеченность ресурсами нефтедобывающей промышленности в годах. Его уменьшение чаще всего указывает на недостаточный размах геолого-разведочных работ, снижение качества нефтей, исчерпание ресурсов крупных месторождений и системные ошибки государственного управления ресурсным потенциалом недр.

15.2 Природные горючие газы

Накопленная мировая добыча природного горючего газа (свободного и попутного) оценивается в 90,0 трлн. м3. При этом важно подчеркнуть, что за последние 20 лет добыча природного газа возросла в 1,7 раза и превысила в 2009 году 3,0 трлн. м3. На Россию и США, при этом приходится почти 40% мировой его добычи. Разведанные доказанные запасы природного газа в мире составляют около 190 трлн. м3. Суммарные извлекаемые мировые ресурсы газа оцениваются в 460-480 трлн. м3, из которых более 45% приходится на Россию, 17-18% – на Ближний и Средний Восток, 6-7% на Африку и 4-5% на Северную Америку [13].

Намечаемое увеличение мировой добычи природного газа вполне обеспечено его ресурсами до конца текущего столетия. При этом надо иметь в виду, что прогнозные ресурсы горючего газа (свободного и попутного) существенно превышают ресурсы нефтей. В связи с успешным развитием газохимических технологий в ближайшие годы станет возможным и эффективным получение из газа (включая и попутный нефтяной газ) бензина и других топлив для транспортных средств по вполне приемлемым ценам. Решение этой проблемы поможет надежно обеспечить топливом транспортные и другие технические средства по крайней мере до конца текущего столетия.

При существенном снижении потребления газа для производства электроэнергии природный газ, несомненно, мог бы существенно усилить свою роль в обеспечении потребностей в топливе транспортных средств и в следующем веке.

15.3 Каменные угли

Накопленная добыча каменных и бурых углей для энергетики, к сожалению, может быть оценена лишь по косвенным данным, т.к. системный учет объемов их добычи был организован лишь в послевоенный период, во второй половине ХХ века. За последние 20 лет (с 1990 до 2010 гг.) в мире было добыто более 1,0 трлн. т каменных и бурых углей (без коксующихся).

Основными странами, добывающими сегодня угли, используемые в энергетике, являются:

страна добыча запасы

Китай >2,5 млрд. т./ год 115,0 млрд. т (разведанные)

США >1,0 млрд. т/год 130,0 млрд. т (разведанные)

Индия 500 млн. т/год 5,0 млрд. т (разведанные)

40,0 млрд. т (общие)

Австралия 400 млн. т/год >75,0 млрд. т (разведанные)

Россия 300 млн. т/год >200 млрд. т (разведанные)

ЮАР 250 млн. т/год 30 млрд. т (разведанные)

Германия 200 млн. т/год >20,0 млрд. т (общие)

В целом разведанные подтвержденные запасы углей в мире превышают 850,0 млрд. т, при общих разведанных запасах 3,6 трлн. т. Несомненно, что запасы углей для обеспечения намечаемых уровней производства электроэнергии вполне достаточны не только на XXI век, но и на более продолжительное время. Как хорошо известно, развитие электроэнергетики, базирующейся на использовании углей, сдерживается высоким уровнем выбросов парниковых газов, сильным загрязнением окружающей среды, а также высокими расходами на добычу и транспорт углей. Радикальные научно-технические решения, снимающие эти проблемы, даже при успешном вовлечении альтернативных источников производства электроэнергии не снимут в повестки дня быстрый рост доли углей в балансе природных энергетических источников в XXI веке.

Топливно-энергетический комплекс (ТЭК) играет важнейшую роль в мировой экономике, т. к. без его продукции невозможно функционирование всех без исключения отраслей. Мировой спрос на первичные энергетические ресурсы (ПЭР) (к первичным энергоресурсам относятся нефть, газ, уголь, ядерная и возобновляемые источники энергии) в 2000--2015 гг. будет расти медленнее, чем в 80-е годы (без учета бывшего СССР), и эта тенденция сохранится в последующие десятилетия XXI в. Одновременно будет повышаться эффективность их использования, особенно в промышленно развитых странах.

Организация стран — экспортёров нефти (сокращённо ОПЕК., англ. OPEC) — международная межправительственная организация (также называемая картелем), созданная нефтедобывающими странами в целях стабилизации цен на нефть. В состав ОПЕК входят 12 стран: Иран, Ирак, Кувейт, Саудовская Аравия, Венесуэла, Катар, Ливия, Объединённые Арабские Эмираты, Алжир, Нигерия, Эквадор и Ангола. Штаб-квартира расположена в Вене.

Организа́ция экономи́ческого сотру́дничества и разви́тия (сокр. ОЭСР,) — международная экономическая организация развитых стран, признающих принципы представительной демократии и свободной рыночной экономики.Создана в 1948 под названием Организа́ция европе́йского экономи́ческого сотру́дничества для координации проектов экономической реконструкции Европы в рамках плана Маршалла.Штаб-квартира ОЭСР. Шато де ла Мюетт, Париж.