- •25. Процесс принятия решений: этапы, участники, основные задачи принятия решений.
- •26. Бинарные отношения. Операции над отношениями. Свойства бинарных отношений.
- •27. Бинарные отношения. Виды бинарных отношений. R-оптимальность.
- •28. Функции выбора. Логические формы функций выбора.
- •29. Функции выбора. Нормальные функции выбора.
- •30. Критериальное пространство. Бинарные отношения в критериальном пространстве.
- •31. Методы многокритериальной оптимизации. Метод линейной свертки
- •32. Методы многокритериальной оптимизации. Метод идеальной точки.
- •33. Методы многокритериальной оптимизации. Выбор с учетом числа доминирующих критериев.
- •34. Метод многокритериальной оптимизации. Метод анализа иерархий
- •35. Основная задача линейного программирования. Методы решений.
- •36. Двойственные задачи линейного программирования.
- •37. Транспортная задача.
- •38. Задача о назначении.
- •39. Динамическое программирование. Задача о замене оборудования.
- •40. Динамическое программирование. Мультипликативная задача.
- •41. Принятие решений в условиях полной неопределенности, в условиях риска
- •42. Принятие решений в условиях конфликта (Элементы теории игр). Основные понятия.
- •43. Задачи теории игр. Классификация игр.
- •44. Матричные игры. Решение матричной игры в чистых стратегиях. Смешанные стратегии.
- •45. Матричные игры. Сведение матричной игры к задаче линейного программирования.
- •46. Графоаналитические методы решения матричных игр.
- •47. Метод Брауна-Робинсон.
- •48. Методы экспертных оценок. Множества оценок экспертов.
- •49. Методы экспертных оценок. Типы шкал для измерения критериев.
- •Шкалы качественных признаков
- •Шкалы количественных признаков.
- •50. Методы обработки экспертной информации.
42. Принятие решений в условиях конфликта (Элементы теории игр). Основные понятия.
Наиболее простыми из ситуаций, содержащих «дурную» неопределенность, являются так называемые конфликтные ситуации – ситуации, в которых сталкиваются интересы двух (или более) сторон, преследующих разные (иногда противоположные) цели, причем выигрыш каждой стороны зависит от того, как себя поведут другие.
Теория игр - это математическая теория конфликтных ситуаций, разрабатывающая рекомендации по наиболее рациональному образу действий каждого из участников в ходе конфликтной ситуации, т. е. таких действий, которые обеспечивали бы ему наилучший результат.
Ее цель – выработка рекомендаций по разумному поведению участников конфликта, выявление оптимальных стратегий игроков. Чтобы сделать возможным математический анализ конфликта, строится его математическая модель. Такую модель называют игрой. От реального конфликта игра отличается тем, что ведется по определенным правилам. Эти правила указывают «права и обязанности» участников, а также исход игры – выигрыш или проигрыш каждого участника в зависимости от сложившейся обстановки. Суть игры в том, что каждый из участников принимает такие решения в развивающейся конфликтной ситуации, которые, как он полагает, могут обеспечить ему наилучший исход. Исход игры - это значение некоторой функции, называемой функцией выигрыша (платежной функцией), которая может задаваться либо аналитически выражением, либо таблично (матрицей). Конфликтующие стороны условно называются «игроками», одно осуществление игры – «партией», исход игры – «выигрышем» или «проигрышем».
Развитие игры во времени можно представлять как ряд последовательных «ходов» участников. Ходом называется выбор игроком одного из предусмотренных правилами игры действий и его осуществление. Ходы бывают личные и случайные. При личном ходе игрок сознательно выбирает и осуществляет тот или другой вариант. При случайном ходе выбор осуществляется не волей игрока, а каким-то механизмом случайного выбора (бросание монеты, игральной кости, вынимание карты из колоды и т. п.). Некоторые игры (так называемые «чисто азартные») состоят только из случайных ходов – ими теория игр не занимается. Ее цель – оптимизация поведения игрока в игре, где (может быть, наряду со случайными) есть личные ходы. Такие игры называются стратегическими.
Стратегией игрока называется совокупность правил, определяющих выбор варианта действий при каждом личном ходе в зависимости от сложившейся ситуации.
Обычно, участвуя в игре, игрок не следует каким-либо жестким, «железным» правилам: выбор (решение) принимается им в ходе игры, когда он непосредственно наблюдает ситуацию. Однако теоретически дело не изменится, если предположить, что все эти решения приняты игроком заранее («если сложится такая-то ситуация, я поступлю так-то»). Это будет значить, что игрок выбрал определенную стратегию. Теперь он может и не участвовать в игре лично, а передать список правил незаинтересованному лицу (судье). Стратегия также может быть задана машине-автомату в виде программы.
Оптимальной стратегией игрока называется такая, которая обеспечивает ему наилучшее положение в данной игре, т. е. максимальный выигрыш. Если игра повторяется неоднократно и содержит, кроме личных, еще и случайные ходы, оптимальная стратегия обеспечивает максимальный средний выигрыш. Основное предположение, исходя из которого находятся оптимальные стратегии, состоит в том, что противник (в общем случае – противники) по меньшей мере, так же разумен, как и сам игрок, и делает все для того, чтобы добиться своей цели. Расчет на разумного противника – лишь одна из возможных позиций в конфликте, но в теории игр именно она кладется в основу.
