Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Билеты 5,6,7,8,9 - физика.doc
Скачиваний:
12
Добавлен:
16.09.2019
Размер:
246.27 Кб
Скачать

1. Электрический ток в металлах.

Все металлы в твердом и жидком состоянии являются проводниками электрического тока. Специально поставленные опыты показали, что при прохождении электрического тока масса металлических проводников остается постоянной, не изменяется и их химический состав. На этом основании можно было предположить, что в создании электрического тока в металлах участвуют только электроны. Предположение об электронной природе электрического тока в металлах подтверждено опытами советских физиков Л. И. Мандельштама и Н. Д. Папалекси и американских физиков Т. Стюарта и Р. Толмена. В этих опытах было обнаружено, что при резкой остановке быстро вращающейея катушки в проводе катушки возникает электрический ток, создаваемый отрицательно заряженными частицами — электронами. При отсутствии электрического поля свободные электроны перемещаются в кристалле металла хаотически. Под действием электрического поля свободные электроны, кроме хаотического движения, приобретают упорядоченное движение в одном направлении, и в проводнике возникает электрический ток. Свободные электроны сталкиваются с ионами кристаллической решетки, отдавая им при каждом столкновении кинетическую энергию, приобретенную при свободном пробеге под действием электрического поля. В результате упорядоченное движение электронов в металле можно рассматривать как равномерное движение с некоторой постоянной скоростью  . Так как кинетическая энергия электронов, приобретаемая под действием электрического поля, передается при столкновении ионами кристаллической решетки, то при прохождении постоянного тока проводник нагревается.

Электрический ток в электролитах

Э лектролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы. Основными представителями электролитов, широко используемыми в технике, являются водные растворы неорганических кислот, солей и оснований. Прохождение электрического тока через электролит сопровождается выделением веществ на электродах. Это явление получило название электролиза. Электрический ток в электролитах представляет собой перемещение ионов обоих знаков в противоположных направлениях. Положительные ионы движутся к отрицательному электроду (катоду), отрицательные ионы – к положительному электроду (аноду). Ионы обоих знаков появляются в водных растворах солей, кислот и щелочей в результате расщепления части нейтральных молекул. Это явление называется электролитической диссоциацией. Например, хлорид меди CuCl2 диссоциирует в водном растворе на ионы меди и хлора: 

При подключении электродов к источнику тока ионы под действием электрического поля начинают упорядоченное движение: положительные ионы меди движутся к катоду, а отрицательно заряженные ионы хлора – к аноду

Законы Фарадея для электролиза.

Закон электролиза был экспериментально установлен английским физиком М. Фарадеем в 1833 году.

      Первый закон Фарадея определяет количества первичных продуктов, выделяющихся на электродах при электролизе: масса m вещества, выделившегося на электроде, прямо пропорциональна заряду q, прошедшему через электролит: m = kq = kIt, где k – электрохимический эквивалент вещества

       Второй закон Фарадея: электрохимические эквиваленты различных веществ относятся их химические эквиваленты 

Объединенный закон Фарадея для электролиза:

Электрический ток в полупроводниках.

Полупроводники́ — материалы, которые по своей удельной проводимости занимают промежуточное место между проводниками и диэлектриками и отличаются от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и воздействия различных видов излучения. Основным свойством этих материалов является увеличение электрической проводимости с ростом температуры.

По значению удельного электрического сопротивления полупроводники занимают промежуточное положение между хорошими проводниками и диэлектриками. К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и др.), огромное количество сплавов и химических соединений. Почти все неорганические вещества окружающего нас мира – полупроводники. Самым распространенным в природе полупроводником является кремний, составляющий около 30 % земной коры. Качественное отличие полупроводников от металлов проявляется прежде всего в зависимости удельного сопротивления от температуры. С понижением температуры сопротивление металлов падает. У полупроводников, напротив, с понижением температуры сопротивление возрастает и вблизи абсолютного нуля они практически становятся изоляторами

Виды полупроводников. Собственная и примесная проводимости полупроводников.

1) По характеру проводимости

-Собственная проводимость

Полупроводники, в которых свободные электроны и «дырки» появляются в процессе ионизации атомов, из которых построен весь кристалл, называют полупроводниками с собственной проводимостью. В полупроводниках с собственной проводимостью концентрация свободных электронов равняется концентрации «дырок».

-Примесная проводимость

Для создания полупроводниковых приборов часто используют кристаллы с примесной проводимостью. Такие кристаллы изготавливаются с помощью внесения примесей с атомами трехвалентного или пятивалентного химического элемента.

2)По виду проводимости

-Электронные полупроводники (n-типа)

Термин «n-тип» происходит от слова «negative», обозначающего отрицательный заряд основных носителей. Этот вид полупроводников имеет примесную природу. В четырёхвалентный полупроводник (например, кремний) добавляют примесь пятивалентного полупроводника (например, мышьяка). В процессе взаимодействия каждый атом примеси вступает в ковалентную связь с атомами кремния. Однако для пятого электрона атома мышьяка нет места в насыщенных валентных связях, и он переходит на дальнюю электронную оболочку. Там для отрыва электрона от атома нужно меньшее количество энергии. Электрон отрывается и превращается в свободный. В данном случае перенос заряда осуществляется электроном, а не дыркой, то есть данный вид полупроводников проводит электрический ток подобно металлам. Примеси, которые добавляют в полупроводники, вследствие чего они превращаются в полупроводники n-типа, называются донорными.

-Дырочные полупроводники (р-типа)

Термин «p-тип» происходит от слова «positive», обозначающего положительный заряд основных носителей. Этот вид полупроводников, кроме примесной основы, характеризуется дырочной природой проводимости. В четырёхвалентный полупроводник (например, в кремний) добавляют небольшое количество атомов трехвалентного элемента (например, индия). Каждый атом примеси устанавливает ковалентную связь с тремя соседними атомами кремния. Для установки связи с четвёртым атомом кремния у атома индия нет валентного электрона, поэтому он захватывает валентный электрон из ковалентной связи между соседними атомами кремния и становится отрицательно заряженным ионом, вследствие чего образуется дырка. Примеси, которые добавляют в этом случае, называются акцепторными.

Р-п переход

Прежде всего, рассмотрим два образца полупроводника с электронной и дырочной электропроводностями (рис. 1.6, а). Напомним, что в дырочном полупроводнике присутствуют в равном количестве подвижные положительные дырки и неподвижные отрицательные ионы. На рис. 1.6,а дырки обозначены знаками «плюс», а отрицательные ионы - знаками «минус», заключенными в кружки. Для нашего рисунка концентрация примеси в электронном полупроводнике выбрана в 2 раза меньше, чем в дырочном. Аналогично обозначениям зарядов в дырочном полупроводнике в электронном полупроводнике электроны обозначены знаками «минус», а положительные ионы - со знаками «плюс», заключенными в кружки. Поскольку N= 2NД, то заряды в дырочном полупроводнике нарисованы в 2 раза чаще, чем в электронном.

Теперь представим, что рассмотренные нами два образца являются просто областями единого кристалла полупроводника (рис. 1.6, б). Тогда по закону диффузии электроны из области n будут перемещаться в область р, а дырки, наоборот, - из области р в область n. Встречаясь на границе р и п областей, дырки и электроны рекомбинируют. Следовательно, в этой пограничной области значительно уменьшается концентрация носителей заряда и обнажаются некомпенсированные заряды неподвижных ионов. Со стороны области обнажаются положительные заряды доноров, а со стороны области р-отрицательные заряды акцепторов. Область некомпенсированных неподвижных зарядов и есть собственно область р-п перехода. Ее часто называют обедненным, истощенным слоем, или i-областью, имея ввиду резко сниженную концентрацию подвижных носителей заряда. Иногда эту область называют запорным слоем электронно-дырочного перехода.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]