
- •Введение
- •1. Основные этапы и особенности теплового проектирования ка
- •2. Факторы космического полета, оказывающие влияние на тепловое состояние ка.
- •2.1. Условия космического пространства, оказывающие прямое и косвенное влияние на тепловое состояние ка
- •2.1.1 Космический вакуум
- •2.1.2. Невесомость.
- •2.1.3. Электромагнитное и корпускулярное излучение Солнца.
- •2.1.4. Исходящее от планет излучение
- •2.1.5. Микрометеорные потоки и собственные выделения ка
- •2.2. Условия на участке торможение и спуск ка или его части (ca) в атмосфере планет.
- •2.2.1. Возможные траектории спуска и их особенности.
- •2.2.2. Газодинамическая картина обтекания спускаемого аппарата высокоскоростным потоком газа.
- •2.2.3. Физико-химические процессы в сжатом слое.
- •Зависимость подводимой к поверхности са тепловой энергии от геометрической формы его поверхности.
- •2.2.5. Оценочные формулы для определения конвективного и радиационного тепловых потоков к поверхности са в окрестности точки торможения и по поверхности аппарата.
- •3. Системы обеспечения тепловых режимов
- •3.1. Общие сведения о системах обеспечения тепловых режимов
- •3.2 Характеристика некоторых средств обеспечения теплового режима, входящих в сотр
- •3.2.1. Экранно-вакуумной теплоизоляции (эвти) и ее свойства.
- •3.2.2 Тепловые трубы и принципы их работы
- •3.2.3.Радиационно-оптические покрытия поверхности ка и их реакция на воздействие коротковолнового электромагнитного и корпускулярного излучения Солнца.
- •3.2.4.Особенности систем обеспечения теплового режима криогенных емкостей ка.
- •3.3. Методы тепловой защиты са
- •3.3.1. Краткая характеристика методов тепловой защиты
- •3.3.2. Механизм разрушения различных теплозащитных материалов.
- •3.3.3. Эффективная энтальпия разрушения.
- •4. Математическое моделирование теплового режима ка
- •4.1.Общая характеристика математических моделей,применяемых на различных этапах проектирования ка.
- •4.2. Описание математической модели теплового режима негерметичных ка в частности, крупногабаритных.
- •4.2.1. Численно-аналитический метод определения угловых коэффициентов
- •4.2.2. Методический подход к расчету распределения плотности поглощаемого элементами ка потока излучения.
- •4.3. Математическое моделирование внешнего теплообмена ка.
- •4.3.1. Расчет плотности падающего на невогнутые поверхности ка потока солнечного излучения
- •4.3.2. Расчет плотности падающего на поверхность ка потока исходящего от планет излучения
- •5. Экспериментальная тепловая отработка ка
- •5.1 Значение экспериментальной тепловой отработки ка.
- •5.2. Краткая характеристика структуры тепловых испытаний ка и методических подходов к экспериментальной отработке сотр ка.
- •5.3. Методы экспериментального исследования теплозащитных материалов.
- •6. Применение обратных задач при исследовании процессов теплообмена и проектировании технических объектов
- •6.1. Особенности задач теплового проектирования, приводящие к постановке обратных задач теплообмена
- •6.2. Классификация обратных задач теплообмена.
- •Список использованных источников
2.1.4. Исходящее от планет излучение
Исходящее от планет электромагнитное (тепловое) излучение можно условно разделить на две составляющие: отраженное солнечное излучение и собственное инфракрасное излучение, источником которого для планет земного типа в основном является поглощенная солнечная радиация.
Плотность, угловое
распределение интенсивности и
спектральный состав отраженного от
планет солнечного излучения зависит
от многих факторов: состава и физических
характеристик атмосферы планеты, если
она имеется, характера подстилающей
поверхности и особенностей ее
макрорельефа, от зенитного угла Солнца.
Процесс отражения весьма сложен,
особенно при наличии у планеты
атмосферы. Так отраженное излучение
Земли формируется в результате
многократного обратного рассеивания
на молекулах воздуха, каплях воды в
облаках и частицах аэрозоля, а также
за счет отражения от твердых и водных
поверхностей. Для характеристики
отражательной способности планеты в
целом, отдельных участков ее поверхности,
а в ряде случаев и отдельных компонент
отражающей системы используется
понятие альбедо, характеризующее долю
отраженной радиации по отношению к
падающей на данную поверхность. Когда
речь идет об отражательной способности
планеты в целом, то говорят о
сферическом ( глобальном ) альбедо (
).
Отражательная способность участка
поверхности планеты характеризуется
локальным альбедо (
).
Спектр отраженного от планет солнечного излучения в той или иной степени трансформируется в результате селективного поглощения излучения атмосферой планеты, если она имеется, и взаимодействия излучения с подстилающей поверхностью, которая является, как правило, несерой.
Индикатриса отражения, т.е. функция, характеризующая зависимость относительной величины интенсивности или направленной силы отраженного излучения от направления при различных значениях зенитного угла Солнца весьма изменчива и по времени и по географическим координатам. Но в целом, как свидетельствуют расчеты и наблюдения, эту индикатрису с удовлетворительной точностью можно считать диффузной.
Механизм формирования уходящего от планет собственного излучения чрезвычайно сложен (особенно для Земли) и определяется процессами поглощения, испускания, отражения и рассеивания излучения, но и особенностям протекания процессов сложного теплообмена (лучистого, конвективного и кондуктивного - в совокупности) в макросистемах, включающих в себя элементы подстилающей поверхности и атмосферы, если она имеется. Значительная неопределенность, изменчивость локальных по координатам и времени излучательных характеристик системы подстилающая поверхность – атмосфера побуждает использовать при расчете и экспериментальном моделировании внешнего теплообмена КА упрощенную модель собственного инфракрасного излучения Земли в космос. Модель, основанную на осреднении по поверхности и по времени радиационно-оптических характеристик элементов излучающей системы. Осреднение основано на допущении о равенстве нулю теплового баланса планеты. Предполагается, что поглощенная Землей или Венерой солнечная радиация полностью переизлучается затем в инфракрасной
области спектра
некоторой равномерно нагретой в
соответствии с поглощенной энергией
эффективной сферической поверхностью,
являющейся внешней границей оптически
активного слоя атмосферы. В соответствии
с этим предположением полусферическая
поверхностная плотность
потока собственного излучения Земли
и Венеры определяется следующим
простым соотношением [7] :
.
Если, например,
для Земли принять
,
то
,
что соответствует радиационной
температуре поверхности
.
В рамках такой модели предполагается
диффузный характер излучения, то есть
независимость в пределах полусферического
телесного угла интенсивности
собственного излучения Земли от
направления. Спектральное распределение
энергии собственного излучения нашей
планеты, как впрочем и других планет
и астероидов солнечной системы,
принимается таким же, как у абсолютно
черного тела с температурой равной
радиационной температуре планеты.