
- •Производство некоторых типов ск в ссср и России
- •Общая схема аддиционной полимеризации
- •J(m)n m* неактивный полимер (обрыв цепи)
- •Основные отличия ионной полимеризации от радикальной:
- •Общая кинетическая картина анионной полимеризации осложнена множественностью форм существования активных центров. (Разная степень диссоциации, сольватации, образования ассоциатов)
- •Рост цепи
- •Образование промежуточного комплекса:
- •Известные типы каталитических систем:
- •Катализаторы Циглера – Натта
- •Реакционная способность алюминийорганических соединений убывает в ряду:
- •Используются две кристаллические модификации трихлорида титана (TiCl3):
- •R содержит одно и то же число атомов углерода.
- •R содержит различное число атомов углерода.
- •Чем больше длина алкильного заместителя в алюминийорганическом соединении, тем сильнее смещается каталитическая активность в сторону больших соотношений Al:Ti.
- •Катализаторы на основе редкоземельных металлов (лантаноидов)
- •Активность катализатора определяется природой лантаноида
- •При получении катализаторов наиболее часто применяют неодим и разеодим, или их смесь («дидим»).
- •Влияние природа галоида в составе катализатора на микроструктуру полимера, его выход и молекулярную массу (оцениваемую по характеристической вязкости [η])
- •Механизм анионно-координационного катализа
- •Различают син- (транс) и анти- (цис) конфигурации комплекса:
- •Большую роль играет также скорость реакции роста цепи.
- •Рост цепи при образовании 1,4-цис полидиена
- •Рост цепи при образовании 1,4-транс полидиена
- •В качестве модификаторов используют:
- •Механизм действия модификатора может включать:
- •Модификатор может взаимодействовать с
- •Степень окисления переходного металла
- •Получение алюминийорганических соединений
- •Изопреновые каучуки Общие вопросы синтеза полиизопренов
- •Получение ски на литийорганических катализаторах
- •Получение ски на катализаторах Циглера-Натта
- •Типы и свойства изопреновых каучуков Характеристики изопреновых каучуков, производимых в разных странах мира
- •Свойства наиболее массовых изопреновых каучуков, выпускаемых ао «Нижнекамскнефтехим»
- •Каучук ски-5
- •Полимеризация олефинов
- •Синтез и активация металлоценов
- •Механизм металлоценового катализа
- •Получение стереоблочного полипропиленового каучука путем газофазной полимеризации.
- •Свойства и области применения стереоблочного эластомерного полипропилена.
- •Получение скэпт с использованием газофазного процесса.
Получение алюминийорганических соединений
За последнее время алюминийорганические соединения находят все возрастающее применение в промышленности и технике.
Из алюминийорганических соединений наибольший практический интерес представляют триалкилпроизводные алюминия. Для получения этих соединений имеется несколько методов.
Действие алкилгалогенидов на алюмо-магниевый сплав:
6RHal + Al2Mg3 2AlR3 + 3MgHal2
Магнийорганический синтез через реактивы Гриньяра:
AlCl3 + 3RMgHal AlR3 + 3MgHalCl
Реакцию необходимо проводить в среде углеводорода, а не эфира, так как в эфирной среде образуются эфираты триалкил (арил) алюминия.
При помощи ртутьорганических соединений:
2Al + 3R2Hg 2AlR3 + 3Hg
С использованием литийорганических соединений:
AlHal3 + 3RLi AlR3 + 3 LiHal
Присоединение алюминийгидрида к олефинам:
AlH3 + CH2=CHR Al(CH2CH2R)3
Взаимодействие алюминия с алкилгалогенидами и дегалогенирование образующихся продуктов:
2Al + 3RCl AlR2ClAlRCl2 AlR3 + 3NaCl + Al
2 (AlR2ClAlRCl2) + 3Na 3AlR2Cl + 3NaCl + Al
Прямой синтез из алюминия, водорода и олефинов:
Al + 1,5H2 + 3CH2=CHR Al(CH2CH2R)3
Из перечисленных способов наиболее интересен прямой синтез – он является удобным и экономически выгодным методом промышленного получения триалкилпроизводных алюминия, так как при этом используется менее дефицитное сырье.
Изопреновые каучуки Общие вопросы синтеза полиизопренов
В результате исследований по полимеризации изопрена, проводимых в нашей стране под руководством Короткова, в 1949 г. впервые в истории химической науки и практики был синтезирован полиизопрен, содержащий около 90% 1,4-звеньев (из них 70% 1,4-цис). Каучук, получивший название СКИ-1, получали полимеризацией в газовой фазе под влиянием металлического лития. Параллельно проводились работы по полимеризации изопрена в растворе в присутствии литийорганических соединений (каучук СКИ-2). Стереоселективность литийорганических катализаторов повышается при их комплексообразовании с различными полярными добавками. Применение таких катализаторов позволило в 50-е годы получить стереорегулярный изопреновый каучук с преимущественным содержанием звеньев 1,4-цис. Это было одним из крупнейших достижений отечественных ученых, предвосхитивших синтезы стереорегулярного полиизопрена на катализаторах Циглера-Натта.
Получаемый на литийорганических соединениях полиизопрен содержит 90–92% звеньев 1,4-цис, макромолекулы таких полимеров практически линейны, полимер по молекулярной массе близок к НК, но характеризуется более узким ММР (Мw/Mn = 1,05÷1,15). Вследствие различий в микроструктуре и отсутствия низкомолекулярных фракций литиевый полиизопрен плохо перерабатывается и уступает по комплексу свойств натуральному каучуку.
Более регулярной структурой (до 98% звеньев 1,4-цис-) обладают полиизопрены, получаемые на комплексных металлорганических катализаторах Циглера-Натта. Поскольку лучшим комплексом эксплуатационных свойств обладают вулканизаты каучуков более регулярной структуры, на применении таких катализаторов основаны почти все промышленные процессы получения изопреновых каучуков во всем мире.
В Советском Союзе первые производства синтетического 1,4-цис-полиизопрена были пущены в 1964 г., и в настоящее время Россия занимает одно из лидирующих мест в мире по производству каучуков такого типа.
В настоящее время изопреновый каучук занимает доминирующее положение в общем объеме производства каучуков и латексов. Основной областью использования изопренового каучука является производство шин. Кроме того, его применяют вместо НК при изготовлении практически всех резиновых изделий как самостоятельно, так и в сочетании с другими каучуками. Изопреновый каучук, содержащий неокрашивающие антиоксиданты, используют для получения цветных изделий широкого потребления: игрушек, спортинвентаря и др. Каучуки, заправленные нетоксичными антиоксидантами, применяют для изготовления медицинских изделий и изделий, соприкасающихся с пищевыми продуктами. Специальные типы СКИ-3 используют для производства вакуумных резин и в кабельной промышленности для изготовления электроизоляции. На основе СКИ-3 приготовляют латекс изопренового каучука, используемый для изготовления губчатых резин и различных пленочных изделий.
Изопреновый каучук СКИ-3 перерабатывают на обычном оборудовании резиновых заводов, в отличие от НК его не подвергают пластикации. Благодаря способности легко растекаться в форме, каучук СКИ-3 пригоден для изготовления изделий методом литья под давлением.
Резиновая промышленность США, Японии, европейских стран всегда использовала значительное количество НК, поэтому потребность в его синтетическом аналоге не была высокой, и в промышленности СК этих странах доля производства 1,4-цис-полиизопрена относительно невелика.
Полиизопрены различного происхождения имеют неодинаковую микроструктуру (табл.16), что вызывает различия в их кристаллизуемости, и, следовательно, физико-механических свойствах сырых резиновых смесей и вулканизатов.
Микроструктура изопреновых каучуков
|
|
Синтетический изопреновый каучук |
||
Содержание структур, % |
НК |
Литий-органи-ческий |
Комплексный металлорганический катализатор |
|
|
|
катализатор |
без модификатора |
с модификатором |
1,4-цис |
98–100 |
93 |
96 |
98 |
1,4-транс |
0 |
0 |
2–3 |
1 |
1,2- |
0 |
0 |
0 |
0 |
3,4- |
0–2 |
6 |
2 |
1 |
«Голова к хвосту» |
98–100 |
96–99 |
97–98 |
98 |
«Голова к голове» |
0 |
1–2 |
1 |
1 |
«Хвост к хвосту» |
0 |
2 |
1 |
1 |
У синтетического и натурального изопреновых каучуков имеются различия в содержании и строении так называемой гель-фракции*. (*Понятие гель-фракции в данном случае условно, поскольку изопреновые каучуки полностью растворимы в бензоле и толуоле.) Под гель-фракцией изопренового каучука (НГФ) понимают количество полимера, нерастворимого в статических условиях в гексане. Даже при одинаковом содержании гель-фракции НК и синтетический изопреновый каучук различаются по структуре НГФ. В НК гель образован лабильными, а в синтетическом каучуке – ковалентными связями.
Наличие гель-фракции в НК объясняют содержанием в нем до 5% белковых фрагментов и активных функциональных групп, которым приписывают структуру шестичленных лактонов. При взаимодействии таких лактонных групп с денатурированными протеинами и образуется гель-фракция НК. По-видимому, образующиеся при этом межмолекулярные связи имеют флуктуационную природу и, разрушаясь при переработке каучука, вновь восстанавливаются в вулканизатах.
Один из возможных механизмов образования гель-фракции в синтетическом полиизопрене, получаемом на гетерогенном комплексном металлорганическом катализаторе, Поддубный и Гречановский описывают следующим образом. При достаточно высокой степени полимеризации длина макромолекул становится соизмеримой с расстояниями между частицами катализатора. Поскольку в полимерных цепях содержится значительное количество ненасыщенных групп, возможна сополимеризация макромолекул, связанных с различными частицами катализатора. При этом возникают вторичные полимер-катализаторные структуры, число макромолекул в которых составляет 102–103. Эти структуры образуют микрогель, при связывании частиц которого между собой образуется макрогель (гель-фракция). Нельзя исключить и вероятность переноса цепи через полимер, возможный при анионной полимеризации. От плотности структурирования частиц в макрогеле НГФ различаются индексом набухания в гексане. Каучук, содержащий плотный гель (индекс набухания <20), плохо перерабатывается, и резины на его основе обладают худшими свойствами по сравнению с вулканизатами НК.
В настоящее время отработаны технологические приемы регулирования количества и плотности геля в синтетическом полиизопрене, а также разработана технология получения безгелевых каучуков.