
- •Микробиология Предмет и задачи микробиологии
- •История развития микробиологии
- •Общая характеристика микроорганизмов
- •Положение микроорганизмов в природе
- •Классификация (таксономия) микроорганизмов.
- •Форма и размеры микробов
- •Строение клетки бактерий
- •Систематика бактерий
- •Вирусы и фаги
- •Классификация дрожжей
- •Физиология микрооранизмов
- •Поступление питательных веществ в клетку
- •Углеродное и азотное питание у микроорганизмов
- •Дыхание бактерии
- •Рост микроорганизмов
- •Условия роста
- •Рост бактерий в статической культуре. Кривая роста.
- •Рост в непрерывной культуре.
- •Питательные среды
- •Выделение чистых культур м/организмов. Количественный учет м/организмов
- •Генетика микроорганизмов
- •Комбинативные изменения.
- •Спиртовое брожение
- •Молочнокислое брожение
- •Получение пропионовой кислоты.
- •Аэробные процессы
- •Уксуснокислое брожение
- •Лимоннокислое брожение
- •Объекты и методы биотехнологии
- •Аппаратурное оснащение микробиологических производств
- •Борьба с микробами - контаминантами в биотехнологических производствах
- •Общая схема биотехнологического производства
- •1.1. Подготовка питательной среды
- •1.2. Выращивание чистой культуры или получение посевного материала
- •1.3. Основная ферментация
- •1.4. Выделение и очистка продуктов
- •1.5. Получение товарных форм препаратов
- •2.Сырвевая база биотехнологии
- •2.4. Крахмал (СеН10о5)
- •2.5. Одноуглеродные соединения
- •Санитарно-микробиологические исследования объектов окружающей среды получение кормовых белков
- •Получение аминокислот
- •Прикладная генетика и клеточная ин.Женерия
- •Аэробные биохимические процессы в очистке сточных вод
- •Микробиологическая характеристика анаэробного ила
- •Микрофлора воздуха
- •Микрофлора почвы
Аппаратурное оснащение микробиологических производств
Для выращивания микроорганизмов были предложены типы биореакторов: конструкции у них в основном были сходны. Их можно подразделить на 2 типа: без подводки стерильного воздуха (для анаэробов) и с подводкой его (для аэробов).
Аэрируемые биореакторы могут быть с мешалками и без них. При конструировании биореакторов учитывается время протекания различных биологических процессов у представителей различных групп организмов.
Размеры ферментаторов определяются соотношением внешнего диаметра к высоте и составляет 1:2 до 1:6. Универсальными являются ферментаторы для анаэробных и аэробных процессов. Эти ферментаторы классифицируют по способу ввода в аппарат энергии для перемешивания:
• газовой фазой (ФГ)
• жидкой фазой (ФЖ)
• газовой и жидкой фазами (ФЖГ)
Примером аппарата группы газовой фазой может быть ферментатор с эрлифтом
В аппарате отсутствует механическое перемешивание, здесь проще поддерживать асептические условия. Воздух для аэрации подается по трубе который расположен вертикально в ферментаторе. Аэратор, который обеспечивает движение выходящего воздуха, расположен в нижней части диффузора и насыщает питательную среду воздухом. Газожидкостная смесь поднимается по диффузору и перемешивается через верхние края. Часть воздуха уходит из аппарата, а более плотная среда опускается вниз в кольцевом пространстве между корпусами ферментатора и диффузором.Так происходит многократная циркуляция среды в ферментаторе. Для отвода биологического тепла внутри ферментатора установлен змеевик, аппарат также снабжен секционной рубашкой. В производстве кормового белка широкое распространение получили ферментаторы с самовосстанавливающими мешалками из группы ФЖ -жидкой фазой. Ферментатор представляет собой вертикальный цилиндрический аппарат, снабженный циркуляционными, теплообменными и аэрирующими устройствами. Теплообменные устройства выполняют в виде трубок, которые установлены в трубных решетках.
Ферментаторы периодического действия из групп (ФЖГ) - газовой и жидкой фазы применяются для получения антибиотиков, витаминов. Конструкция этого ферментатора обеспечивает стерильность ферментации длительное время. Это цилиндрический вертикальный аппарат со сферическим днищем, имеющий аэрирующий, перемешивающий и теплопередающий устройства. Воздух для аэрации поступает в ферментатор через барботер. Отверстия в барботере направлены вниз, барботер должен соответствовать диаметру мешалки. Эффективность работы ферментатора определяется интенсивностью перемешивания. Перемешивающие устройства служат для сохранения температуры во всем объеме аппарата, своевременному подводу продуктов питания к клеткам и вывода продуктов метаболизма. Для культуральных жидкостей с высокой степенью вязкости эффективными являются открытые турбинные мешалки с шестью лопастями.
Важным элементом в ферментаторах являются теплообменные устройства. Применение концентрированных питательных сред, высокий удельный расход мощности на перемешивание - все это сказывается на возрастании тепловыделений и для отвода тепла в ферментаторе устанавливают наружные и внутренние теплообменные устройства. Промышленные ферментаторы имеют секционные рубашки снаружи, а внутри аппарата - четыре змеевика. Общая продуктивность процесса в биореакторе определяется количеством целевого продукта в ЕД активности или в кг, получаемого с 1м3 ферментационной емкости в час. Расчет ведут отдельно - для периодического и непрерывного процесса. Общую продуктивность для непрерывных процессов определяют в установившемся режиме, а для периодических процессов и полунепрерывных - с учетом времени на подготовку ферментатора к работе.
Объемная продуктивность процесса - это количество целевого продукта в ЕД активности или в кг, получаемое с 1м3 питательной среды в час.
Выход продукта от субстрата - это количество целевого продукта в ЕД активности или в кг, полученное из 1 кг компонента ферментационной среды, являющегося энергоносителем.
ЗНАЧЕНИЕ АСЕПТИКИ В БИОТЕХНОЛОГИЧЕСКИХ ПРОЦЕССАХ
Биотехнологические процессы в основном проводят в асептических условиях. Асептика - это комплекс мероприятий, направленных на предотвращение попадания в среду посторонних веществ.
Использование асептики в биотехнологии предполагает использование биообъекта (может быть и микробы) и полное исключение попадания других микроорганизмов.
Асептика включает в себя:
- влажную уборку помещений; обработку антисептическими веществами, ультрафиолетовое облучение, использование стерильных инструментов; подача стерильного воздуха в ферментаторы и др.
Существует механическая, физическая и химическая защита биообъекгов. К механической защите относятся: удаление механических примесей (например, из воздуха культиваторов с помощью фильтров).
К физической - обработка воздуха и поверхностей приборов ультрафиолетовыми лучами, кипячение, стерилизация, обработка ультразвуком.
К химической - обработка поверхностей химическими антисептиками.
В производстве источниками микробов - контаминантов могут быть почва, вода, воздух, человек. Из почвы микробы - контаминтанты такие как актиномиценты, палочки - бациллы попадают в биотехнологические процессы. С пылью они могут попасть в воздух.
Люди, которые заняты в биотехнологическом производстве, могут быть источником контаминирующей микрофлоры. Но на поверхности кожи в среднем сосредоточено до 10'° микробных клеток. Наиболее загрязненными являются кисти рук, подошвы, локти, шея. Многочислена микрофлора ротовой полоста:
бактериальные коковые формы, вибрионы. Здоробый человек за одно чихание выделяет до 20000 микробных клеток, которые распространяются до 1,5 м.
Источником микробов - контамининтов могут быть и компоненты питательных сред (фаги, дрожжи). Микробы контаминанты не только могут подавать развитие и функции био-объекта, но и дезорганизовать какую-либо ткань. Они способны продуцировать токсические вещества.