- •5(Панорама современного естествознания)
- •12.Материя, формы существования материи.
- •13.Корпускулярная и континуальная концепция описания природы.
- •15.Взаимодействие. Близкодействие и дальнодействие.
- •16.Ядра.Ядерные реакции.
- •19.Принцип неопределенности и дополнительности. Принцип суперпозиции.
- •20.Порядок и беспорядок в природе. Хаос. Хаотическое поведение динамических систем.
- •21.Принципы симметрии. Законы сохранения.
- •22(Динамические и статистические закономерности в природе). Динамические закономерности.
- •23(Закон сохранения энергии в макроскопических процессах)
- •25(Закономерности самоорганизации)
- •27(Хим элемент и хим соединение. Периодический закон Менделеева)
- •32(Структурные уровни организации живой материи)
- •33(Определение жизни. Отличительные признаки живого)
- •36.Генетика и эволюция.
- •37.Происхождение человека.
- •38.Биоэтика и поведение человека.
- •39.Человек:физиология, здоровье, эмоции, творчество и работоспособность.
- •42.Ноосфера.
- •43.Принципы универсального эволюционизма.
- •45.Внутренне строение и история геологического развития Земли.
- •46.Современные концепции развития геосферных оболочек.
- •47.Литосфера как абиотическая основа жизни.
23(Закон сохранения энергии в макроскопических процессах)
Хорошо известно, что тепло, возникшее в результате трения или выполнения другой механической работы, нельзя снова превратить в энергию и потом использовать для производства работы. С другой стороны, путём точных экспериментов было доказано, что тепловая энергия превращается в механическую энергию в строго определённых количествах. Существование такого механического эквивалента для теплоты свидетельствовало о её сохранении. Эти и многие другие факты нашли своё обобщение в законах классической термодинамики: - если к системе подводится количество теплоты Q и над системой производится работа W, то энергия системы возрастает до величины U: U = Q + W. U – внутренняя энергия системы, которая показывает, что тепло, полученное системой, не исчезает, а затрачивается на увеличение внутренней энергии и производство работы. - невозможно осуществить процесс, единственным результатом которого было бы превращение тепла в работу при постоянной температуре. При любых взаимодействиях тел энергия не исчезает бесследно и не возникает из ничего. Энергия только передается от одного тела к другому или превращается из одной формы в другую. Внутренняя энергия U системы, изолированной от любых взаимодействий с внешней средой, не изменяется при любых взаимодействиях внутри системы. Следовательно, для изолированной системы справедливо соотношение: U = const, или U = 0
Возможны два качественно различных способа передачи энергии от одного макроскопического тела к другому — в форме работы и в форме теплоты (путем теплообмена). Первый закон термодинамики устанавливает эквивалентность этих двух способов передачи энергии, утверждая, что изменить внутреннюю энергию тела можно любым из этих способов.
Изменение энергии тела, осуществленное первым способом, называют работой, совершаемой над этим телом. Передача энергии в форме работы производится в процессе силового взаимодействия тел и всегда сопровождается макроперемещением. Работа, совершаемая над телом, может непосредственно пойти на увеличение любого вида энергии.
Передача энергии путем теплообмена между телами обусловлена различием температур этих тел. Энергия, получаемая телом в форме теплоты, может непосредственно пойти только на увеличение его внутренней энергии.
Невозможен вечный двигатель (перпетуум-мобиле) первого рода. Это является следствием начала термодинамики.
Всеми явлениями природы управляет закон сохранения и превращения энергии:
«Энергия в природе не возникает из ничего и не исчезает: количество энергии неизменно, она только переходит из одной формы в другую».
24(энтропия. принципы возрастания энтропии) Энтропи?я — понятие, впервые введённое Клаузиусом в термодинамике для определения меры необратимого рассеивания энергии, меры отклонения реального процесса от идеального. Определённая как сумма приведённых теплот, она является функцией состояния и остаётся постоянной при обратимых процессах, тогда как в необратимых — её изменение всегда положительно. Принцип возрастания энтропии сводится к утверждению, что энтропия изолированных систем неизменно возрастает при всяком изменении их состояния и остается постоянной лишь при обратимом течении процессов.В связи с развитием теплотехники ученые в прошлом веке пришли к простому, но удивительному закону, потрясшему человечество. Это закон (иногда его называют принцип ) возрастания энтропии (хаоса) во Вселенной. Этот закон не опровергнут до сих пор, все попытки его обойти, хитроумные опровержения, неизменно рассыпались при тщательном научном рассмотрении.
Говоря проще, этот закон утверждает, что любая сложная структура может только упрощаться, т.е. разрушаться.Другими словами, это значит, что энергия в материальном мире может только рассеиваться, но не может сама собой концентрироваться.Из закона возрастания энтропии (второго закона термодинамики), в частности, следует, что тепловая энергия может переходить только от тела с более высокой температурой к телу с более низкой температурой, но никак не наоборот. Отсюда вытекает очевидное следствие, что рано или поздно наступит так называемая «Тепловая смерть Вселенной», т.е. температура всех её частей выровняется, все процессы (включая жизнь) прекратятся и Вселенная застынет в мертвом вечном равновесии.
Однако этот закон справедлив только для изолированной однородной системы, т.е. системы без притока или оттока энергии, имеющей однотипную структуру. Земля, к счастью, как и многие другие планеты, относится к так называемым открытым системам. Она непрерывно получает мощный поток лучистой энергии от Солнца и избыток этой энергии также непрерывно излучает обратно в космическое пространство. Причем разные части Земли получают и отдают энергию неодинаково. Энтропия этих частей разная, между ними происходит обмен энергией, переход её из одной формы в другую. Вот почему мы наблюдаем течение рек, дожди, ветры, грозы, бури, землетрясения и другие природные явления.
