Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпора к экзамену 2 курс 2сем..doc
Скачиваний:
561
Добавлен:
01.05.2014
Размер:
1.16 Mб
Скачать

Переход к формулам Релея—Джинса.

Формула Планка точно согласуется с экспериментальными данными во всем интервале частот от 0 до . При малых частотах (больших длинах волн), когдаможно разложить экспоненту по. В результате получим, что, тогда (3) и (4) переходят в формулу Релея—Джинса.

и

18, Законы фотоэффекта

Внешним фотоэффектом называется вырывание электронов из вещества под действием света. Законы фотоэффекта изучали с помощью схемы с двухэлектродной лампой с освещаемым катодом (рис. 5.1). Под действием света из катода вырываются электроны, которые под действием электрического поля перемещаются к аноду, создавая анодный ток.

Рис.5.1

Вольтамперная характеристика, полученная с помощью такой схемы при неизменном световом потоке Ф, приведена на рис. 5.2.

Рис.5.2

Из анализа вольтамперных характеристик получены законы фотоэффекта.

  1. Свет не любой частоты вызывает фотоэффект. Для каждого вещества существует красная граница фотоэффекта, т. е. минимальная частота v0, при которой возможен фотоэффект.

Величина v0 зависит от химической природы вещества и состояния его поверхности.

  1. Максимальная энергия фотоэлектронов не зависит от светового потока, а линейно зависит от частоты света.

  2. Величина фототока насыщения, возникающего при освещении монохроматическим светом, пропорциональна падающему световому потоку Ф,

Iнас = Кст · Ф - закон Столетова,

где Кст - коэффициент пропорциональности.

Эти законы невозможно было объяснить с классической точки зрения, согласно которой электрическая компонента электромагнитной волны вызывает вынужденные колебания свободных электронов в металле, сообщая им энергию, достаточную для вылета. Тогда максимальная кинетическая энергия фотоэлектронов должна быть пропорциональна квадрату амплитуды световой волны (см. (3.14)), т. е. должна зависеть от светового потока, что противоречит опытным фактам.

 

5.2. Уравнение Эйнштейна для фотоэффекта

Объяснение законов фотоэффекта дал в 1905 г. немецкий ученый Альберт Эйнштейн на основе гипотезы световых квантов. Вслед за Планком он предположил, что, если излучение энергии атомами происходит дискретно в виде порций или квантов, то ее распространение в пространстве и поглощение веществом происходит порциями (квантами). Энергия кванта равна:

где v - частота падающего света,      h = 6.63 • 10 -34 (Дж•с) - постоянная Планка.

Заметим, что в механике есть величина, которую называют действием. Она имеет размерность "энергия × время". Поэтому постоянную Планка иногда называют квантом действия.

Кванты света называются фотонами.

Поэтому с квантовой точки зрения свет представляет собой поток фотонов.

Уравнение Эйнштейна объясняет все закономерности внешнего фотоэффекта. Оно представляет собой по сути дела закон сохранения энергии. Каждый фотон взаимодействует с одним электроном и передает ему энергию hv. Эта энергия затрачивается на то, чтобы совершить работу выхода электрона из металла - A и сообщить ему кинетическую энергию. Причем, если электрон вырывается с поверхности металла, а не из глубины, то кинетическая энергия электрона будет максимальной.

Уравнение Эйнштейна для фотоэффекта имеет вид

Покажем, как из уравнения Эйнштейна (5.2) можно объяснить законы фотоэффекта.

  1. Из формулы (5.2) легко можно найти красную границу фотоэффекта. Если кинетическая энергия равна нулю, т. е. если , то . Тогда красная граница фотоэффекта равна:

Если частота падающего света больше или равна красной границе , то фотоэффект наблюдается, иначе - нет. Работа выхода зависит от химической природы вещества. Ее можно найти в справочнике. Значение работы выхода обычно указывают в электронвольтах . Из формулы (3.21) следует, что

Длину волны λ  тоже называют красной границей фотоэффекта.

  1. Из уравнения (5.2) можно выразить максимальную кинетическую энергию вылетевших электронов

Из формулы (5.4) следует, что максимальная кинетическая энергия вылетевших электронов линейно зависит от частоты падающего света. Экспериментальное значение можно найти, зная задерживающую разность потенциалов (рис. 5.2):

,

где e - заряд электрона, Uз - задерживающая разность потенциалов.

  1. Третий закон фотоэффекта - закон Столетова - можно объяснить так: изменение светового потока Ф пропорционально изменению числа фотонов nф, падающих на единицу поверхности металла в единицу времени.

При этом изменяется число электронов, взаимодействующих с фотонами nф, а значит изменяется фототок. Фототок насыщения соответствует такому состоянию, когда все вылетевшие из катода электроны попадут на анод. Следовательно, можно написать цепочку пропорциональностей

.

Если перейти от пропорциональности к равенству, получим формулу для записи закона Столетова

Таким образом, в явлении фотоэффекта проявляется квантовая   природа света.