
- •1. Аксіоматична будова шкільного курсу стереометрії. Наслідки аксіом стереометрії
- •Як і в планіметрії, властивості основних фігур у стереометрії виражаються аксіомами.
- •Якщо дві різні площини мають спільну точку, то вони перетинаються по прямій, що проходить через цю точку.
- •Н аслідком з аксіоми с3 є Теорема про існуванню площини, яка проходить через дану пряму і дану точку: Через пряму і точку, яка не належить їй, можна провести площину, і до того ж тільки одну.
- •Теорема про існування площини, яка проходите через три точки
- •2. Зображення многогранників та методи побудови їх плоских перерізів.
- •4. Взаємне розміщення прямих і площин. Паралельність у просторі.
- •1) Не мають спільної точки 2) не перетинаються
- •5 Методика вивчення векторів у просторі. Дії над векторами та їх властивості.
- •6 Декартові координати у просторі. Кути між прямими і площинами.
- •8. Методика вивчення теми “Многогранники та площі їх поверхонь”. Побудова перерізів многогранників.
- •9. Вимоги до сучасного уроку математики в школі. Підвищення ефективності уроків математики
- •10 Методика вивчення тіл обертання. Площі їх поверхонь та об’єми. Перерізи тіл обертання площинами.
- •12 Задачі у навчанні математики. Функції та види задач, способи їх розв’язування.
- •13. Методика вивчення похідної. Правила обчислення похідних. Похідна складеної функції.
- •Правила диференціювання.
- •14. Методика вивчення числових функцій. Границя функції в точці. Неперервні і розривні функції.
- •17. Методика розв’язування тригонометричних рівнянь та нерівностей
- •18. Тотожні перетворення тригонометричних виразів, основні тригонометричні тотожності.
- •19 Методика вивчення показникової функції. Показникові рівняння та нерівності
- •21. Методика розв’язування логарифмічних рівнянь і нерівностей. Системи рівнянь та нерівностей
- •Властивості логарифмічної функції.
- •24 Методика навчання елементів комбінаторики, початків теорії ймовірностей та вступу до статистики у курсі математики загальноосвітньої школи. Розв’язати рівняння:
- •25 Вимірювання многокутників. Площа многокутника і її аксіоми. Теорема існування і єдиності.
- •28. Геометричні побудови на площині і в просторі. Методика розв’язування задач на побудову.
- •30. Проблеми особистісно-орієнтованого підходу у процесі вивчення математики в школі.
21. Методика розв’язування логарифмічних рівнянь і нерівностей. Системи рівнянь та нерівностей
Логарифмічними рівняннями називають рівняння, які містять змінну під знаком логарифма.
Приклади логарифмічних рівнянь:
lg
х
= 1 + lg2x,
log3(x
+ 3) = 9,
=
і т. д.
Розв'язати логарифмічне рівняння — це означає знайти всі його корені або довести, що рівняння коренів не має.
Найпростіше логарифмічне рівняння має вигляд log х = b, де а > 0, а ≠ 1, х > 0. За означенням логарифма випливає, що х = аb.
Інший вигляд найпростішого логарифмічного рівняння такий:
loga x = loga b, де а > 0, а ≠ 1, х > 0, b > 0.
Із цього рівняння випливає, що х = b. Дійсно із рівності loga x = loga b на підставі означення логарифма і основної логарифмічної тотожності маємо:
x
=
= b.
Найпростішим логарифмічним рівнянням є рівняння logx a = b, де х > 0, х ≠ 1, а > 0.
За
означенням логарифма маємо:хb
= а, звідси х
=
.
В основному, всі логарифмічні рівняння, які ми будемо розв'язувати, зводяться до розв'язування найпростіших рівнянь.
Як відомо, логарифмічна функція у = logа х зростає при a > 1, спадає — при 0 < a < 1. Із зростання функції у = logа x у першому випадку і спадання — у другому випадку випливає:
1)
При a > 1
нерівність logа
х2
> logа
х1
рівносильна системі
2)
При 0 < a <
1 нерівність
logа
х2
> logа
х1
рівносильна системі
22 Методика вивчення логарифмічної функції, її властивості, графіки, похідні. Похідна оберненої функції. Тотожні перетворення логарифмічних виразів
Поняття логарифмічної функції. Спробуємо знайти формулу функції, оберненої до показникової функції у = ах.
Функція
у=ах
зростаюча
при а
>
1 і спадна при 0<а<1
За
достатньою умовою існування оберненої
функції до даної
функція у=ах
має
обернену на області визначення
D(f)=R
(відповідно
область значень цієї функції E(f)
= (0; +
)).
Розв'яжемо рівняння у = ах з двома невідомими відносно невідомої х. Оскільки х є показником степеня ах, то, застосовуючи означення логарифма, матимемо х=logа у = ф (у). Дістали формулу функції, оберненої до функції у=ах=f(х).
3. Поміняємо позначення аргументу і функції у формулі оберненої функції. Дістанемо y=logаx=ф (x). — формулу функції, оберненої до функції у=ах у прийнятих позначеннях аргументу і функції. Одержана обернена функція дістала назву логарифмічної функції.
Логарифмічною називається функція у=1оgaх, де а > 0 і а ≠1, обернена до показникової у=ах.
Означення
логарифма можна коротко записати так:
.
Ця рівність справедлива при b > 0, a > 0, a ≠ 1 називається основною логарифмічною тотожністю.
Відомо, що область визначення і область значень взаємно обернених функцій міняються множинами. Тому D(φ) =(0;+ ), E(φ) =R.
Графік функції у = logаx можна дістати з графіка функції у = ах, симетрично відобразивши останній відносно прямої у = х. Для цього достатньо для кожної точки М(с;d) графіка у=ах побудувати точку М(d; с), симетричну їй відносно прямої у= х.