Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
11З.doc
Скачиваний:
4
Добавлен:
10.09.2019
Размер:
1.31 Mб
Скачать

1.2 Topological analyze: definition of branches of tree and antitree, definition of matrixes

According to definition of Tree and Antitree graph (firure 1.1) is represented as figure 1.3.

Figure 1.3. Tree and Antitree.

According to figure 1.3, table 1.2 “Matrix of incendence A” was developed.

This matrix is fully repeating 1st rule of Kirgof.

Table 1.2. Matrix of incendence A

Branches

Nodes

Q1 (y4)

Q2 (x1)

Q3 (x2)

Q4 (y1)

Q5 (y2)

Q6 (x3)

Q7 (x4)

Q8 (y5)

Q9 (x5)

Q10 (y3)

Q11 (y6)

B1

1

-1

-1

-1

B2

1

1

-1

-1

B4

1

-1

-1

-1

B5

1

1

-1

1

B6

-1

1

1

Matrix of incidence can be divided by 2 matrixes – Ax (for tree brunches) and for Ay (for antitree brunches).

To do this, it is needed to sort columns for tree and antitree parts.

Matrix Ax is represented in table 1.3.

Table 1.3. Matrix Ax

Branches

Nodes

Q2 (x1)

Q3(x2)

Q6 (x3)

Q7 (x4)

Q9 (x5)

B1

-1

-1

B2

1

1

B4

-1

-1

B5

-1

B6

1

Matrix Ay is represented in table 1.4.

Table 1.4. Matrix Ay

Branches

Nodes

Q4 (y1)

Q5 (y2)

Q10 (y3)

Q1 (y4)

Q8(y5)

Q11(y6)

B1

-1

1

B2

-1

-1

B4

1

-1

B5

1

1

1

B6

1

-1

According to figure 1.3, table 1.5 “Matrix of independent contours S” was developed. This matrix is fully repeating 2nd rule of Kirgof.

Table 1.5. Matrix of independent contours S

Branches

Cont.

Q1 (y4)

Q2 (x1)

Q3 (x2)

Q4 (y1)

Q5 (y2)

Q6 (x3)

Q7 (x4)

Q8 (y5)

Q9 (x5)

Q10 (y3)

Q11 (y6)

Cont 1

1

1

1

1

Cont 2

-1

1

1

Cont 3

1

-1

-1

Cont 4

1

-1

-1

Cont 5

-1

1

1

Cont 6

-1

1

-1

Matrix of independent contours can be divided by 2 matrixes – Sx (for tree brunches) and for Sy (for antitree brunches).

Table 1.6. Matrix Sx

Brunches

Contours

Q2 (x1)

Q3(x2)

Q6 (x3)

Q7 (x4)

Q9 (x5)

Cont 1

1

1

Cont 2

-1

1

Cont 3

1

-1

Cont 4

-1

Cont 5

1

Cont 6

-1

Table 1.7. Matrix Sy

Branches

Contours

Q4 (y1)

Q5 (y2)

Q10 (y3)

Q1 (y4)

Q8(y5)

Q11(y6)

Cont 1

1

1

Cont 2

1

Cont 3

-1

Cont 4

1

-1

Cont 5

-1

1

Cont 6

1

-1