Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КСЕ (39-30).docx
Скачиваний:
6
Добавлен:
09.09.2019
Размер:
101.49 Кб
Скачать

Гомогенные и гетерогенные реакции

При рассмотрении вопроса о скорости реакции необходимо различать реакции, протекающие в гомогенной системе (гомогенные реакции), и реакции, протекающие в гетерогенной системе (гетерогенные реакции). Системой в химии принято называть рассматриваемое вещество или совокупность веществ. При этом системе противопоставляется внешняя среда — вещества, окружающие систему. Обычно система отграничена от среды. Различают гомогенные и гетерогенные системы. Гомогенной называется система, состоящая из одной фазы. Гетерогенной — система, состоящая из нескольких фаз. Фазой называется часть системы, отделенная от других ее частей поверхностью раздела, при переходе через которую свойства системы изменяются скачком. Примером гомогенной системы может служить любая газовая смесь (все газы при не очень высоких давлениях неограниченно растворяются друг в друге), хотя бы смесь азота с кислородом. Другим примером гомогенной системы может служить раствор хлорида натрия, сульфата магния, азота и кислорода в воде. В каждом из этих двух случаев система состоит только из одной фазы: из газовой фазы в первом примере и из водного раствора во втором. Если реакция протекает в гомогенной системе, то она идет во всем объеме этой системы. Например, при сливании (и перемешивании) растворов серной кислоты и тиосульфата натрия помутнение, вызываемое появлением серы, наблюдается во всем объеме раствора: H2SO4+Na2S2O3= Na2SO4+Н2O+SO2+S Если реакция протекает между веществами, образующими гетерогенную систему, то она может идти только на поверхности раздела фаз, образующих систему. Например, растворение металла в кислоте: Fe+2HCl=FeCl2 + H2 может протекать только на поверхности металла, потому что только здесь соприкасаются друг с другом оба реагирующих вещества. В связи с этим4скорость гомогенной реакции и скорость гетерогенной реакции определяются различно, Скорость гомогенной реакции определяется количеством вещества, вступающего в реакцию или образующегося при реакции за единицу времени в единице объёма системы.

Скорость гетерогенной реакции определяется количеством вещества, вступающего в реакцию или образующегося при реакции за единицу времени на единице поверхности фазы.   1Величину поверхности твердого тела не всегда легко измерить. Поэтому иногда скорость гетерогенной реакции относят не к единице поверхности, а к единице массы или объема твердой фазы.

Оба этих определения можно записать в математической форме. Введем обозначения: vгомог — скорость реакции в гомогенной системе; vгетерог — скорость реакции в гетерогенной системе; n — число молей какого-либо из получающихся при реакции веществ; V — объем системы; t — время; S -— площадь поверхности фазы, на которой протекает реакция;  — знак приращения (n= n2-n1;  = t2-t1). Тогда: vгомог=n/(St).

Первое из этих уравнений можно упростить. Отношение числа молей (n) вещества к объему (V) системы представляет собою мольно-объемную концентрацию (С) данного вещества: n/V=C. Отсюда: n/V=C. И окончательно:

vгомог=C/t. Последнее уравнение является математическим выражением другого определения скорости реакции в гомогенной системе: скоростью реакции в гомогенной системе называется изменение концентрации какого-либо из веществ, вступающих в реакцию или образующихся при реакции, происходящее в единицу времени. Как уже говорилось, при практическом использовании химических реакций весьма важно знать, с какой скоростью будет протекать данная реакция в тех или иных условиях и как нужно изменить эти условия для того, чтобы реакция протекала с требуемой скоростью. Скорость химической реакции зависит от природы реагирующих веществ и условий протекания реакции, важнейшими из которых являются следующие: концентрация с, температура t, присутствие катализаторов, а также от некоторых других факторов (например, от давления — для газовых реакций, от интенсивности движения жидкости или газа около поверхности, на которой происходит реакция, от измельчения — для твердых веществ, от радиоактивного излучения). Влияние концентрации реагирующих веществ, Чтобы осуществилось химическое взаимодействие веществ А и В, их молекулы (частицы) должны столкнуться. Чем больше столкновений, тем быстрее протекает реакция. Число же столкновений тем больше, чем выше концентрация реагирующих веществ. Отсюда на основе обширного экспериментального материала сформулирован основной закон химической кинетики, устанавливающий зависимость скорости реакции от концентрации реагирующих веществ: Скорость химической реакции пропорциональна произведению реагирующих веществ.   Для реакции A+B=C+D этот закон выразится уравнением: v = kcAcB,                                                                                   (12.1) где сA и сB — концентрации веществ А и В, моль/л; k — коэффициент пропорциональности, называемый константой скорости Реакции. Основной закон химической кинетики называют законом действующих масс.

Из уравнения (12.1) нетрудно установить физический смысл константы скорости k: она численно равна скорости реакции, когда концентрация каждого из реагирующих веществ составляет 1 моль/л или когда их произведение равно единице. Константа скорости реакции k зависит от природы реагирующих веществ и от температуры, но не зависит от их концентрации. Уравнение (12.1), связывающее скорость реакции с концентрацией реагирующих веществ, называется кинетическим уравнением реакции. Если опытным путем определено кинетическое уравнение реакции, то с его помощью можно вычислить скорости при других концентрациях тех же реагирующих веществ. Основной закон химической кинетики не учитывает реагирующие вещества, находящиеся в твердом состоянии, ибо их концентрации постоянны и они реагируют лишь на поверхности. Так, например, для реакции горения угля: С+O2=СО2 кинетическое уравнение реакции имеет вид: v = kcCSсO2, где k — константа скорости, сC — концентрация твердого вещества; S — площадь поверхности. Это величины постоянные. Обозначив произведение постоянных величин через k', получим v=k'cO2, т.е. скорость реакции пропорциональна только концентрации кислорода. Влияние температуры. Зависимость скорости реакции от температуры определяется правилом Вант-Гоффа: При повышении температуры на каждые 10 градусов скорость большинства реакций увеличивается в 2-4 раза.   Математически эта зависимость выражается соотношением; vt2=vt1•(t2-t1)/10,           (12.2) где vt1, vt2 — скорости реакции соответственно при начальной (t1) и конечной (t2) температурах, а  — температурный коэффициент скорости реакции, который показывает, во сколько раз увеличивается скорость реакции с повышением температуры реагирующих веществ на 10°. Правило Вант-Гоффа является приближенным и применимо лишь для ориентировочной оценки влияния температуры на скорость реакции. Температура влияет на скорость химической реакции, увеличивая константу скорости.

(30) Учение о химическом процессе

Учение о химических процессах

Способность к взаимодействию различных химических реагентов определяется не только их атомарно-молекулярной структурой, но и условиями протекания химических реакций. К ним относятся термодинамические факторы (температура, давление и др.) и кинетические факторы (все, что связано с переносом веществ, образованием их промежуточных форм). Их влияние на химические реакции вскрывается на концептуальном уровне химии, который обобщенно называют учением о химических процессах. Учение о химических процессах является областью глубокого взаимопроникновения физики, химии и биологии. Действительно, в основе этого учения находятся химическая термодинамика и кинетика, которые в равной степени относятся и к химии, и к физике. А живая клетка, исследуемая биологической наукой, представляет собой в то же время микроскопический химический реактор, в котором происходят превращения, изучаемые химией, и многие из которых химия пытается реализовать в макроскопическом масштабе. Таким образом, изучая условия протекания и закономерности химических процессов, человек вскрывает глубокую связь, существующую между физическими, химическими и биологическими явлениями и одновременно перенимает у живой природы опыт, необходимый ему для получения новых веществ и материалов. Большинство современных химических технологий реализуется с использованием катализаторов - веществ, которые увеличивают скорость реакции, не расходуясь в ней. В современной химии получило развитие также направление, принципом которого является энергетическая активация реагента (то есть подача энергии извне) до состояния полного разрыва исходных связей. В данном случае речь идет о больших энергиях. Это так называемая химия экстремальных состояний, использующая высокие температуры, большие давления, излучение с большой величиной энергии кванта (ультрафиолетовое, рентгеновское, гамма-излучение). К этой области относятся плазмохимия (химия на основе плазменного состояния реагентов), а также технологии, в которых активация процесса достигается за счет направленных электронных или ионных пучков (элионные технологии). Химия экстремальных состояний позволяет получать вещества и материалы, уникальные по своим свойствам: композитные материалы, высокотемпературные сплавы и металлические порошки, нитриды, силициды и карбиды тугоплавких металлов, разнообразные по своим свойствам покрытия. Примером могут служить сверхпрочные покрытия из нитрида титана, наносимые на металлообрабатывающий инструмент для многократного увеличения срока его эксплуатации. Интересно, что золотой блеск и высокая коррозионная стойкость пленок нитрида титана позволили с успехом применить технологию его нанесения при изготовлении кровли куполов церквей взамен традиционной и дорогой технологии золочения. Эффективность технологий на основе химии экстремальных состояний очень высока. Характерным для них является энергосбережение при высокой производительности, высокая автоматизация и простота управления технологическими процессами, небольшие размеры технологических установок.