
- •Содержание
- •Введение
- •1 Основы построения восп
- •Основные определения систем передачи
- •1.2 Вопросы теории света
- •1 .3 Распространение световых лучей в оптических волокнах
- •1.4 Конструкция оптического волокна
- •1.5 Классификация восп по методам мультиплексирования
- •Назначение компонентов схемы восп:
- •1.6 Факторы шумов и искажений волоконно-оптической линии передачи
- •1.6.1 Оптические потери в одномодовых волокнах
- •1.6.2 Дисперсионные характеристики одномодовых оптических волокон
- •1.6.3 Нелинейные эффекты в волоконной оптике
- •2 Источники оптического излучения
- •2.1 Характеристики полупроводниковых материалов
- •2.2 Светоизлучающие диоды
- •Структура сид Диаграмма прямо смещенного перехода
- •2.3 Лазерные диоды
- •2.4 Характеристики источников излучения
- •Диаграмма направленности излучения показывает распределение мощности в пространстве.
- •2.5 Соединение источника с волокном
- •3 Модуляция излучения источников
- •Модуляция излучения – это изменение параметров оптической несущей по закону информационного колебания.
- •3.1 Прямая (непосредственная) модуляция
- •3.1.1 Математическое описание работы модулятора
- •3.1.2 Основные характеристики прямой модуляции Частотная характеристика модуляции с сид. Для модулятора с сид справедливо:
- •3.2 Внешняя модуляция
- •3.3 Обобщенная схема передающего оптического модуля (пом) пом содержит оптические и электрические компоненты, заключенные в общий корпус и сопряженные со стандартным оптическим соединителем.
- •4 Приемники излучения восп
- •4.1 Принцип действия фотодиодов
- •Основные характеристики фд
- •4.3 Приемные оптические модули (ПрОм)
- •4.4 Шумы фотоприемных устройств (фпу)
- •Полосы пропускания фпу определяются:
- •5 Линейный тракт восп
- •5.1 Расчет длины регенерационного участка одноволновых восп
- •5.2 Линейные коды восп
- •5.3 Ретрансляторы восп
- •5.3.1 Полупроводниковые оптические усилители
- •5.3.2 Волоконно-оптические усилители
- •5.3.3 Волоконные усилители, использующие эффект вынужденного комбинационного рассеяния (вкр)
- •5.3.4 Волоконные усилители, использующие вынужденное рассеяние Мандельштама-Бриллюэна
- •6 Системы связи плезиохронной цифровой иерархии
- •6.1 Системы связи для соединительных линий первичной цифровой иерархии е1
- •6.2 Системы связи вторичной цифровой плезиохронной иерархии е2
- •6.3 Системы связи третичной цифровой плезиохронной иерархии ез
- •6.4 Системы связи цифровой плезиохронной иерархии е4
- •Дополнительная литература по дисциплине
- •Параметры одномодовых оптических волокон
- •Характеристики линейных трактов одноволновых волоконно-оптических систем передачи sdh согласно рекомендации g.957 мсэ-т
- •Характеристики оборудования линейных трактов восп с многоволновой передачей
1 .3 Распространение световых лучей в оптических волокнах
Как правило, гармоническая волна имеет неплоские волновые поверхности. На каждом малом участке волновую поверхность можно заменить частью плоскости, касательную к ней в рассматриваемой точке.
Пучок локально
параллельных
световых лучей.
Рисунок 1.2
В результате приходим к теории световых лучей, направленных по нормали к волновым поверхностям, то есть к геометрической оптике. Величиной grad S определяется световой луч в каждой точке волновой поверхности.
Нужно хорошо усвоить, что физический смысл плоской волны и физический смысл световых лучей (иначе говоря, геометрической оптики) один и тот же.
Законы
геометрической оптики используются
для описания и анализа процесса
передачи оптических сигналов, когда
длина волны излучения
значительно меньше размеров диаметра
сердцевины ОВ, то есть
<<
2R,
где R
– радиус сердцевины.
В геометрической оптике световые волны изображаются световыми лучами, которые распространяются в однородной среде прямолинейно.
При попадании на границу раздела двух сред с разными значениями показателей преломления световой луч изменяет своё направление и в общем случае появляется преломленный и отражённый лучи.
Показатель преломления, обозначаемый n, является безразмерной величиной, выражаемый через отношение скорости света в вакууме (с) к скорости света а материале (v):
(1.4)
Среда, у которой показатель преломления больше, называется оптически более плотной, в противном случае – менее плотной.
пппп п
отр
п - угол падения; п = отр
отр – угол отражения; пр п
пр – угол преломления.
n1
пр
n2
n1 n2
Свет отклоняется от перпндикуляра
кр
900
кр- критический угол
n1
n2
Луч не попадает во второй материал
п
отр
n1
n2
п = отр. Угол падения равен углу
отражения.
Если угол падения больше критического, то
свет будет отражён от границы двух сред
Рисунок 1.3 – Законы преломления и отражения
Соотношения между углами падения п, отражения отр и преломления пр определяются законом Снеллиуса:
п = отр и n1 Sin п = n2 Sin пр (1.5)
или
если n1
n2,
то пр
п.
Путём увеличения угла падения можно достичь состояния, при котором преломленный луч будет скользить по границе раздела сред, не переходя в другую среду, т. е. пр= /2. Угол падения, при котором имеет место данный эффект, называется критическим углом кр полного внутреннего отражения
(1.6)
Очевидно, что для всех углов падения, больших критического (п кр), будут иметь место только отражения, а преломления будут отсутствовать. Это явление называется полным внутренним отражением. На этом эффекте основан принцип передачи оптического излучения по оптическим волноводам.
Даже когда свет проходит в более плотную среду, некоторая его часть отражается назад в исходную среду. Этот эффект получил название отражение Френеля. Чем больше разница показателей преломления сред, тем больше доля света отражается назад. Показатель Френелевского отражения F на границе с воздухом равен:
(1.7)
В децибелах потери переданного света составляют:
дБ = -10 log (1-F).
Для света, падающего из воздуха на границу стекла (n = 1,5 для стекла), Френелевское отражение равно примерно 0,17 дБ. Поскольку такого рода потери происходят как при вхождении света в стекло, так и при выходе из него, то потери на соединении двух стёкол составляют 0,34 дБ. Френелевское отражение не зависит от направления прохождения двух сред.