Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по астрономии. Часть 2.doc
Скачиваний:
209
Добавлен:
09.09.2019
Размер:
3.47 Mб
Скачать

§ 5.13. Переменные звезды

Физическими переменными называются звезды, которые меняют свою светимость (а также яркость) в результате физических процессов, происходящих в самой звезде. В зависимости от характера переменности различаются пульсирующие переменные и эруптивные переменные. Все переменные звезды, в том числе и затменные переменные, имеют специальные обозначения, если только они не были ранее обозначены буквой греческого алфавита. Первые 334 переменные звезды каждого созвездия обозначаются последовательностью букв латинского алфавита R, S, Т, ..., Z, RR, RS, ... ..., RZ, SS, ST, ..., SZ, ..., ZZ, AA, .... AZ, ..., QQ, ..., QZ с добавлением названия соответствующего созвездия (например, RR Lyr (Лиры)).

Пульсирующие переменные.

Классическим примером этих звезд являются цефеиды.

Цефеидами называются физические переменные звезды, характеризующиеся особой формой кривой блеска, типичный пример которой приведен на рис. 5.11. Видимая звездная величина плавно и периодически меняется со временем и соответствует изменению светимости звезды в несколько раз (обычно от 2 до 6). Этот класс звезд назван по имени одной из типичных его представительниц — звезды  Цефея.

 

Рисунок 5.11. Кривая блеска  Цефея.

Цефеиды относятся к гигантам и сверхгигантам классов F и G. Это обстоятельство позволяет наблюдать их с огромных расстояний, в том числе и далеко за пределами нашей звездной системы — Галактики.

Период — одна из важнейших характеристик цефеид. Для каждой данной звезды он постоянен с большой степенью точности, но у разных цефеид периоды весьма различны (от суток до нескольких десятков суток).

Одновременно с видимой звездной величиной у цефеид меняется спектр, в среднем в пределах одного спектрального класса. Это означает, что изменение светимости цефеид сопровождается изменением температуры их атмосфер в среднем на 1500 К.

В спектрах цефеид по смещению спектральных линий обнаружено периодическое изменение лучевых скоростей. Наибольшее смещение линий в красную сторону происходит в минимуме, а в синюю — в максимуме блеска. Таким образом, периодически меняется и радиус звезды.

Описанные наблюдаемые особенности цефеид свидетельствуют о том, что атмосферы этих звезд испытывают регулярные пульсации. Следовательно, в них имеются условия для поддержания в течение долгого времени на постоянном уровне особого колебательного процесса.

Равновесие звезды определяется балансом сил гравитации и внутреннего давления газа. Если равновесие нарушится и по какой-либо причине звезда слегка сожмется или, наоборот, расширится, то, стремясь вернуться в равновесное состояние, ее вещество может прийти в колебательное движение, подобно тому, как маятник колеблется в поле тяжести Земли. Если период Р выражать в часах, среднюю плотность — в г/см3, то получим соотношение

.

(5.31)

Таким образом, период механических колебаний звезды типа Солнца оказывается около часа. У Солнца действительно наблюдаются очень слабые пульсации с указанными периодами. Однако для того, чтобы подобные пульсации могли достигнуть столь значительных амплитуд, как это наблюдается у цефеид, должен существовать определенный механизм, обеспечивающий энергией эти колебания. В настоящее время полагают, что эта энергия возникает за счет излучения звезды, а раскачка колебаний происходит благодаря своеобразному клапанному механизму, когда непрозрачность наружных слоев звезды задерживает часть излучения внутренних слоев.

Расчеты показывают, что фактически роль такого клапана играет тот слой звезды, в котором частично ионизован гелий (при этом водород и остальные элементы практически полностью ионизованы). Нейтральный гелий непрозрачен к ультрафиолетовому излучению звезды, которое задерживается и нагревает газ. Этот нагрев и вызванное им расширение способствует ионизации гелия. слой становится прозрачным, поток выходящего излучения увеличивается. Но это приводит к охлаждению и сжатию, из-за чего гелий снова становится нейтральным и весь процесс повторяется снова.

Анализ светимостей и периодов цефеид позволил сделать вывод, что между этими величинами существует зависимость. Так, средняя желтая абсолютная звездная величина

.

(5.32)

Существование зависимости между периодом и абсолютной звездной величиной у цефеид играет исключительно важную роль в астрономии: по ней определяют расстояния до весьма удаленных объектов (например, для галактик), когда не могут быть применены иные методы. Такой метод определения расстояний называется методом цефеидных параллаксов.

Кроме цефеид, к пульсирующим переменным относятся также лириды (типа RR Лиры), звезды типа Миры Кита, а также полуправильные переменные и неправильные переменные.

Таким образом, пульсации, скорее всего, закономерное явление, отличающее некоторые этапы эволюции звезд.

Эруптивные переменные.

Среди звезд меньшей светимости (карликов) также имеются переменные различных типов, общее известное число которых примерно раз в 10 меньше количества пульсирующих гигантов. Все они проявляют свою переменность в виде повторяющихся вспышек, которые могут быть объяснены различного рода выбросами вещества — эрупциями. Поэтому всю эту группу звезд вместе с новыми звездами называют эруптивными переменными.

Наиболее интересными типами указанных звезд являются новые и сверхновые звезды.

Новые звезды. Термин «новая» звезда не означает появления вновь возникшей звезды, а отражает только определенную стадию переменности некоторых звезд.

Новыми звездами называют эруптивные переменные звезды особого типа, у которых хотя бы однажды наблюдалось внезапное и резкое увеличение светимости (вспышка) не менее чем на 7-8 звездных величин. Чаще всего во время вспышки видимая звездная величина уменьшается на 10m13m, что соответствует росту светимости в десятки и сотни тысяч раз. В среднем абсолютная звездная величина в максимуме достигает 8m,5. После вспышки новые звезды являются очень горячими карликами. Если вспышка одной и той же новой звезды наблюдалась не менее двух раз, то такая новая называется повторной.

Всего в настоящее время известно около 300 новых звезд, из них около 150 вспыхнуло в нашей Галактике и свыше 100 — в туманности Андромеды. У известных семи повторных новых в сумме наблюдалось около 20 вспышек. Многие (возможно даже все) новые и повторные новые являются тесными двойными системами. После вспышки новые звезды часто обнаруживают слабую переменность.

Кривые блеска новых звезд имеют особый вид, позволяющий разделить все явления на несколько этапов (рис. 5.12). Начальный подъем блеска происходит очень быстро (2-3 суток), но незадолго до максимума рост светимости несколько замедляется (окончательный подъем). После

Рисунок 5.12. Кривая блеска новой звезды.

 

максимума происходит уменьшение светимости, длящееся годы. Падение блеска на первые три звездные величины обычно плавное. Иногда наблюдаются вторичные максимумы. Окончательное падение блеска происходит довольно плавно. В результате звезда приобретает ту же светимость, что и до вспышки.

Если определить время плавного падения блеска на первые три звездные величины , то для новой можно определить ее абсолютную звездную величину в максимуме блеска:

.

(5.33)

Таким образом, с помощью соотношения (5.33) можно определить расстояние до новой, зная ее видимую звездную величину.

Описанная картина изменения светимости новой звезды показывает, что во время вспышки происходит внезапный взрыв, вызванный неустойчивостью, возникшей в звезде. Согласно различным гипотезам, эта неустойчивость может возникать у некоторых горячих звезд в результате внутренних процессов, определяющих выделение энергии в звезде, либо вследствие воздействия каких-либо внешних факторов.

Возможной причиной взрыва новой является обмен вещества между компонентами тесных двойных систем, к которым принадлежат, по-видимому, все такие звезды. Так, например, если богатое водородом вещество из оболочки главной звезды попадет на поверхность ее спутника — белого карлика, может произойти внезапное выделение термоядерной энергии. Общее количество энергии, выделяющейся при вспышке новой, превышает 1038-1039 Дж. Солнце излучает столько энергии за десятки тысяч лет! Все же это существенно меньше запасов всей термоядерной энергии звезды. На этом основании полагают, что взрыв новой звезды не сопровождается изменением общей ее структуры, а затрагивает только поверхностные слои.

Следствием нагрева газа, происходящего в результате взрыва, является выброс звездой вещества, приводящий к отрыву от нее внешних слоев — оболочки с массой (10–410-5) M. Эта оболочка расширяется с огромной скоростью от нескольких сотен до 1500-2000 км/с. Звезда быстро сбрасывает ее и в результате образует вокруг себя планетарную туманность. Расширяющиеся газовые туманности были обнаружены почти у всех наиболее близких к нам новых звезд.

Сверхновые звезды. Сверхновыми называются звезды, вспыхивающие подобно новым и достигающие в максимуме абсолютной звездной величины от 18m до 19m и даже 21m.

Возрастание светимости происходит более, чем на 19m, т.е, в десятки миллионов раз. Общая энергия, излучаемая сверхновой за время вспышки, превышает 1041-1042 Дж, что в тысячи раз более, чем для новых. Фотографически зарегистрировано около 60 вспышек сверхновых в других галактиках, причем нередко их светимость оказывалась сравнимой с интегральной светимостью всей галактики, в которой произошла вспышка.

По описаниям более ранних наблюдений, выполненных невооруженным глазом, удалось установить несколько случаев вспышек сверхновых в нашей Галактике. Наиболее интересной из них является упоминаемая в летописях Сверхновая 1054 г., вспыхнувшая в созвездии Тельца и наблюдавшаяся китайскими и японскими астрономами в виде внезапно появившейся «звезды-гостьи», которая казалась ярче Венеры и была видна даже днем.

Другое наблюдение подобного явления в 1572 г. описано значительно подробнее датским астрономом Тихо Браге. Было отмечено внезапное появление «новой» звезды в созвездии Кассиопеи. За несколько дней эта звезда, быстро увеличивая свою светимость, стала казаться ярче Венеры. Вскоре ее излучение начало постепенно ослабевать, причем угасание сопровождалось колебаниями интенсивности и небольшими вспышками. Через два года она перестала быть видна невооруженным глазом. В 1604 г. вспышку сверхновой звезды наблюдал Кеплер в созвездии Змееносца.

Хотя это явление похоже на вспышку обычной новой, оно отличается от нее своим масштабом, плавной и медленно меняющейся кривой блеска и спектром. По характеру спектра вблизи эпохи максимума различаются два типа сверхновых звезд.

Большой интерес представляют быстро расширяющиеся газовые туманности, которые в нескольких случаях удалось обнаружить на месте вспыхнувших сверхновых звезд. Самой замечательной из них является знаменитая Крабовидная туманность в созвездии Тельца. Форма эмиссионных линий этой туманности говорит о ее расширении со скоростью около 1000 км/сек. Современные размеры туманности таковы, что расширение с этой скоростью могло начаться не более 900 лет назад, т.е. как раз в эпоху вспышки Сверхновой 1054 г. Совпадение по времени и местоположению Крабовидной туманности со «звездой-гостьей», описанной в китайских летописях, говорит о возможности того, что туманность в созвездии Тельца является результатом вспышки сверхновой. Крабовидная туманность является одним из самых мощных источников радиоизлучения в нашей галактике.

Пульсары. В августе 1967 г. в Кембридже (Англия) было зарегистрировано космическое радиоизлучение, исходящее от точечных источников в виде строго следующих друг за другом четких импульсов Длительность отдельного импульса у таких источников составляет от нескольких миллисекунд до нескольких десятых долей секунды. Резкость импульсов и необычайная правильность их повторений позволяют с очень большой точностью определить периоды пульсаций этих объектов, названных пульсарами. Период одного из пульсаров составляет 1,337301133 сек, в то время как у других периоды заключены в пределах от 0,03 до 4 сек. В настоящее время известно около 200 пульсаров. Все они дают сильно поляризованное радиоизлучение в широком диапазоне длин волн, интенсивность которого круто возрастает с ростом длины волны. Это означает, что излучение имеет нетепловую природу. Удалось определить расстояния до многих пульсаров, оказавшиеся в пределах от сотен до тысяч парсеков. Таким образом, это сравнительно близкие объекты, заведомо принадлежащие нашей Галактике.

Наиболее замечательный пульсар, в точности совпадает с одной из звездочек в центре Крабовидной туманности. Специальные наблюдения показали, что оптическое излучение этой звезды также меняется с тем же периодом. В импульсе звезда достигает 13m, а между импульсами она не видна. Такие же пульсации у этого источника испытывает и рентгеновское излучение, мощность которого в 100 раз превышает мощность оптического излучения.

Совпадение одного из пульсаров с центром такого необычного образования, как Крабовидная туманность, наводит на мысль о том, что они являются как раз теми объектами, в которые после вспышек превращаются сверхновые звезды. Согласно современным представлениям, вспышка сверхновой звезды связана с выделением огромного количества энергии при ее переходе в сверхплотное состояние, после того как в ней исчерпаны все возможные ядерные источники энергии.

Для достаточно массивных звезд наиболее устойчивым состоянием оказывается слияние протонов и электронов в нейтроны и образование так называемой нейтронной звезды. Если вспышки сверхновых звезд действительно завершаются образованием таких объектов, то весьма возможно, что пульсары — нейтронные звезды. В этом случае при массе порядка 2M они должны иметь

радиусы около 10 км. При сжатии до таких размеров плотность вещества становится выше ядерной, а вращение звезды в силу закона сохранения момента количества движения ускоряется до нескольких десятков оборотов в секунду. По-видимому, промежуток времени между последовательными импульсами равен периоду вращения нейтронной звезды. Тогда пульсация объясняется наличием неоднородностей, своеобразных горячих пятен, на поверхности этих звезд. Здесь уместно говорить о «поверхности», так как при столь высоких плотностях вещество по своим свойствам ближе к твердому телу.

У некоторых пульсаров обнаружено медленное увеличение периодов (с удвоением за 103-107 лет), по-видимому, вызванное тормозящим влиянием магнитного поля, связанного с пульсаром, в результате чего вращательная энергия переходит в излучение.