Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Иммунолог.doc
Скачиваний:
4
Добавлен:
08.09.2019
Размер:
2.16 Mб
Скачать

Рецепторы естественных киллеров

Способность NK распознавать «своё» и «чужое» на клетках определяется поверхностными рецепторами. У NK существует сложная система рецепторов, распознающих молекулы собственных клеток организма. Кроме того, NK имеют множество рецепторов к стресс-индуцированным клеточным лигандам, которые свидетельствуют о повреждении клетки. К таким рецепторам относятся естественные рецепторы цитотоксичности (natural cytotoxicity receptors (NCRs), NKG2D. Они активируют цитотоксические функции NK.

  • Цитокиновые рецепторы

Цитокины играют ключевую роль в активации NK. Поскольку эти молекулы секретируются клетками при вирусной инфекции, они служат сигналом для NK о присутствии вирусных патогенов. В активации NK принимают участие цитокины IL-12, IL-15, IL-18, IL-2 и CCL5.

  • Fc рецепторы

NK, как и макрофаги, нейтрофилы и тучные клетки, несут Fc рецепторы, которые активируют клетку при связывании с Fc фрагментами антител. Это позволяет NK атаковать инфицированные клетки одновременно с гуморальным ответом и лизировать клетки с помощью антител-зависимого цитотоксического действия.

  • Активирующие и ингибирующие рецепторы

Для предотвращения атаки на неповрежденные клетки на поверхности NK имеется система регуляторных рецепторов (inhibitory NK cell receptors). Эти рецепторы можно разделить на 2 больших семейства:

  • killer lectin-like receptors (KLRs) — гомологи рецепторов-лектинов С типа.

  • killer cell immunoglobulin -like receptors (KIRs) — рецепторы, содержащие иммуноглобулин-подобные домены.

Регуляторные рецепторы, связываясь с неповреждёнными молекулами MHC I, индуцируют ингибиторный сигнал, подавляя активацию NK .

Связывание активирующих рецепторов NK со своими лигандами (присутствующими только на повреждённых клетках) активирует цитотоксическую функцию NK.

Механизм действия

NK являются цитотоксичными; в их цитоплазме находятся маленькие гранулы, содержащие перфорин и протеазы. Перфорин выделяется непосредственно возле инфицированной клетки и образует поры в её клеточной мембране, через которые заходят протеазы и другие молекулы, приводя к апоптозу или осмотическому лизису клетки. Выбор между апоптозом и лизисом имеет большое значение, поскольку при лизисе зараженной вирусом клетки произойдет освобождение вирионов, а апоптоз приведет к разрушению вирусов вместе с клеткой.

28.Антиген и иммуноген (от antigen = antibody-generating — «производитель антител») — это вещество, которое организм считает чужеродным или потенциально опасным. Против антигена организм начинает вырабатывать собственные антитела — этот процесс называется иммунным ответом. В настоящее время известно, что иммунная система состоит не только из антител. Под иммуногенами понимают все соединения, которые могут быть распознаны адаптивной иммунной системой. Иммуногены — это вещества (свои или чужие), которые вызывают ответ иммунной системы. Антигены — чужеродные вещества (белки или полисахариды), которые организм блокирует выработанными антителами.[1]Антигены, как правило, являются белками или полисахаридами и представляют собой части бактериальных клеток, вирусов и других микроорганизмов. Липиды и нуклеиновые кислоты проявляют антигенные свойства в сочетании с белками. Однако простые вещества, даже металлы, также могут становиться антигенами в сочетании с собственными белками человеческого организма и их модификациями. Они называются гаптены (haptens).

Антигены немикробного происхождения — это пыльца, яичный белок и белки трансплантатов тканей и органов, а также поверхностные белки клеток крови при гемотрансфузии.

Аллергены — это вещества, вызывающие аллергические реакции.

Клетки показывают свои антигены иммунной системе при помощи главного комплекса гистосовместимости (MHC), в зависимости от предъявляемого антигена и типа молекулы комплекса гистосовместимости, активируются разные виды иммунных клеток.

В зависимости от происхождения, антигены классифицируют на экзогенные, эндогенные и аутоантигены.

Экзогенные антигены

Экзогенные антигены попадают в организм из окружающей среды, путем вдыхания, проглатывания или инъекции. Такие антигены попадают в антиген-представляющие клетки путем эндоцитоза или фагоцитоза и затем процессируются на фрагменты. Антиген-представляющие клетки затем на своей поверхности презентируют фрагменты Т-хелперам (CD4+) через молекулы главного комплекса гистосовместимости второго типа (MHC II).

Эндогенные антигены

Эндогенные антигены образуются клетками организма в ходе естественного метаболизма или в результате вирусной или внутриклеточной бактериальной инфекции. Фрагменты далее презентируются на поверхности клетки в комплексе с белками главного комплекса гистосовместимости первого типа MHC I. В случае, если презентированные антигены распознаются цитотоксическими лимфоцитами (CTL, CD8+), Т-клетки секретируют различные токсины, которые вызывают апоптоз или лизис инфицированной клетки. Для того, чтобы цитотоксические лимфоциты не убивали здоровые клетки, аутореактивные Т-лимфоциты исключаются из репертуара в ходе отбора по толерантности.

Аутоантигены

Аутоантигены — это как правило нормальные белки или белковые комплексы (а также комплексы белков с ДНК или РНК), которые распознаются иммунной системой у пациентов с аутоиммунными заболеваниями. Такие антигены в норме не должны узнаваться иммунной системой, но, ввиду генетических факторов или условий окружающей среды, иммунологическая толерантность к таким антигенам у таких пациентов может быть утеряна.

Чужеродность — основополагающее свойство антигена по отношению к организму, в который антиген попадает. В связи с этим выделяют следующие антигены по отношению к организму: аутологичные (собственный, аутоантиген), сингенные (изологичный, как правило, среди генетически однородных линий животных), аллогенные (гомологичный, среди представителей одного вида), ксеногенные (гетерологичный, среди представителей разных видов).

Антигенность молекулы определяется ее способностью вызывать иммунный ответ в конкретном организме. Иммуногенность — это способность антигена сформировать иммунитет (иммунологическую память). Эти определения сложно разграничить, однако антигенность подразумевает способность молекул быть распознанными рецепторами иммунокомпетент-ных клеток индивидуально, т.е. это свойство определяет специфичность иммунного ответа. Большинство антигенов (преимущественно белковой природы) способно вызывать формирование иммунологической памяти. Это важно в отношении антигенов микроорганизмов, обусловливающих невосприимчивость к инфекции, — насколько иммуногенна та или иная вакцина? Иммуногенность антигена можно усилить за счет более эффективной его переработки и презентации иммунокомпетентным клеткам, присоединения иммуностимулирующих компонентов и т.д. Высока зависимость иммуногенности от генотипических особенностей организма, от размера молекулы, ее конформации, разнообразия эпитопов.

Еще одно свойство антигена — толерогенность. Это способность антигена вызывать развитие неотвечаемости (анергии) или иммунной толерантности. Как правило, толерогены — вещества с низкой молекулярной массой, не образующие агрегатов, не презентируемые АПК.

Специфичность — одна из наиболее важных характеристик антигена, отличающая его от других антигенов. Специфичность определяют структурные особенности антигена, в частности структура антигенной детерминанты, или эпитопа. Практически в любой молекуле антигена есть несколько антигенных детерминант, или эпитопов, определяющих ее специфичность. Иммунная система через TCR или антитело распознает не весь антиген, а часть молекулы, определяемую как доминантный эпитоп. Поиск эпитопов, распознаваемых иммунной системой, — крайне важная задача вакцинологии. Выявление эпитопов аутоантигенов открывает пути к более эффективной диагностике аутоиммунных патологий и созданию новых подходов к их лечению.

29. Антигены, не обладающие иммуногенностъю, носят название гапте-нов. Гаптены сами по себе не способны индуцировать развитие им­мунного ответа, продукцию иммунных лимфоцитов или антител, но они способны с ними реагировать. Кроме гаптены, представляю­щие собой молекулы с малой молекулярной массой, за счет неболь­ших размеров не способны вызывать иммунный ответ, однако при со­единении с большой белковой молекулой (которая в данном случае

Называется носителем) они приобретают иммуногенные свойства. Но­сителями таких молекул могут быть альбумины, глобулины или син­тетические полипептиды.

Следующее понятие, которое необходимо расшифровать — это эпи-

Топ, или антигенная детерминанта. Эпитоп (антигенная детерминан­та) — это место на антигене или внутри него, которое специфически реагирует с антителом. Таким образом, эпитоп определяет специфич­ность молекулы и индуцирует антительный ответ. Обычно эпитопы

Чрезвычайно малы по размерам и составляют 4—5 аминокислотных или моносахаридных остатка. Антигены мультивалентны, т. е. име­ют, как правило, большое количество эпитопов, к каждому из кото­рых в организме продуцируются свои специфические антитела. Анти­генные молекулы можно искусственно изменять с помощью добавле­ния или удаления эпитопов. Это может происходить и естественным путем. Классическим примером в клинике является аллергическая ре­акция на пенициллин. Известно, что метаболит пенициллина — пени-

Цилловая кислота — действует как гаптен, может соединяться с белка- Ми организма и вызывать иммунный ответ. Продукция антител на та- Кой новый эпитоп, в состав которого        пеницилловая кислота и Белки организма, при последующем введении пенициллина может вы- Зывать аллергическую реакцию вплоть до анафилактического шока.

Эпитопы на антигенах могут быть        е. представлять

Собой части аминокислотных последовательностей молекулы, или

Образующимися в результате свертывания мо­лекулы в клубочек. В зависимости от пространственной конфигура­ции белковой молекулы конформационные эпитопы (антигенные де­терминанты) могут включать несколько участков ее полипептидов, рас­положенных вблизи друг от друга. Такие детерминанты формируются

При вторичной и третичной укладке (конформации) полипептида или

При объединении нескольких полипептидов (четвертичная структура).