Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
LECK_06.doc
Скачиваний:
2
Добавлен:
07.09.2019
Размер:
564.22 Кб
Скачать

6.2. Способы передачи данных

На рис. 6.3, а показан пример одноуровневой, или односту­пенчатой, системы, в которой все КП непосредственно связаны с ПУ. Усложнение телемеханических систем, рост объемов передаваемой и перерабатываемой информации приводят к тому, что зачастую более эффективными оказываются многоуровневые систе­мы, построенные по иерархическому принципу (рис. 6.3,б).

В иерархических системах информация отбирается, частично обрабатыва­ется и обобщается на каждом промежуточном уровне при передаче ее от КП к ПУ и, наоборот, конкретизируется и уточняется на каждом уровне при передаче от ПУ к КП. При этом в современныx телемеханических системах каждый КП сам представляет собой весьма сложную местную систему централизованного контроля. Иерархический принцип построения широко используется в АСУ.

В зависимости от выполняемых функций телемеханические сиcтeмы принято делить на системы телеизмерения, телесигнализа­ции, телеуправления и телерегyлирования.

Рис. 6.3. Схемы одноуровневой (а) и трехуровневой (б) телемеханических систем.

Задачей систем телеизмерения (ТИ), или телеметрии, является передача от КП к ПУ информации о значениях каких-либо параметров контролируемого объекта (например, скорости перекачки нефти в системе АСУ нефтeпровода или температуры в отсеках космического корабля в системе космической телеметрии). Различают системы ТИ текущих параметров и системы ТИ интегральных параметров (например, расхода горючего или электроэнергии за определенный промежуток времени). Измеряемый параметр в системах ТИ в общем случае имеет непрерывный ряд значений. Следовательно, от КП к ПУ по линии связи необходимо передавать информацию о значении аналоговых величин.

Системы телесигнализации (ТС) служат для получения с помощью устройств телемеханики информации о дискретных состояниях контролируемых объектов (например, включен или выключен исполнительный двигатель, укладываются ли размеры детали в заданные пределы и т. д.).

Задачей систем телеуправления (ТУ) является передача от ПУ к КП управляющих воздействий - команд. В системах ТУ могут передаваться как простейшие двухпозиционные команды (типа включить-выключить), так и многопозиционные (типа повернуть антенну радиолокационной станции на нужный угол или включить двигатели космического корабля на заданное время). Пункты управления систем ТУ могут выдавать команды как непосредственно на исполнительные органы контролируемых объектов, так и записывать их в запоминающие устройства для последующего выполнения.

Во многих случаях на КП имеются местные САУ, поддержива­ющие необходимый режим работы контролируемого объекта (например, угол поворота рулей, требуемые давление или температуру и пр.). При этом с ПУ эпизодически передаются лишь заданные значения управляемых параметров - так называемые установки, а в остальное время местные САУ работают автономно. Такая функция систем телемеханики называется телерегулированием (ТР).

В настоящее время не применяются системы телемеханики, выполняющие какую-либо одну из перечисленных функций: ТИ, ТС, ТУ или ТР. Практически все современные телемеханические системы являются многофункциональными, или комплексными, системами. Так, например, на основании измерения параметров ориентации космического корабля по системе ТС для реализации всех этих функций используется общее оборудование, т. е. одна система выполняет функции ТИ, ТУ, ТС.

Независимо от конкретных выполняемых функций все телемеханические системы всегда являются системами передачи инфор­мации, главная задача которых - передать информацию на необходимое расстояние с минимальными затратами (часто и за минимальное время). В этом плане системы телемеханики все теснее смыкаются с чисто информационными системами передачи данных (СПД). Специфическими особенностями систем телемеханики по сравнению с СПД остаются меньший объем передаваемой информации, но значительно большая ее достоверность. Так, в системах ТУ вероятность возникновения ложной команды не должнa превышать 10-7 … 10-13, а в системах ТИ допустимая погреш­ность составляет не более 1 ... 0,05 %.

Основные тенденции развития систем телемеханики - расширение возможностей систем по управлению контролируемыми объектами, увеличение числа ПУ и КП и рост объемов передаваемой информации наряду с повышением требований к их надежнocти и точности. Для решения этих задач в системах телемехани­ки все более широкое применение находят ЭВМ различных классов и производительности. В качестве ПУ используют универсальные ЭВМ с соответствующими приемопередающими устройствами, пультами управления и устройствами индикации. Применение встроенных микропроцессоров и микроЭВМ на КП позволяет производить предварительную обработку и отбор информации, что повышает оперативность и гибкость управления и разгружает каналы связи.

Широкое применение ЭВМ приводит к тому, что, как и в САУ, задачей телемеханики становится не разработка соответствующей аппаратуры, а поиск алгоритмов оптимального управления объектами.

Системы телемеханики используют для контроля и управле­ния объектами на расстоянии. По аналогии с классификацией систем автоматического контроля и управления здесь также различают системы телеконтроля, т. е. системы, обеспечивающие контроль, регистрацию или сигнализацию о состоянии параметров ОУ на расстоянии, и системы телеуправления, т. е. системы, обес­печивающие контроль параметров ОУ и управление ими на расстоянии.

Системы телемеханики применяют в ирригационных сооружениях, тепличных и других комплексах, т.е. там, где необходимо контролировать и управлять объектом на больших расстояниях.

Основные элементы системы телемеханики:

источник информации - собирает, хранит и выдает исходные данные, которые необходимо передавать на расстояние. Источни­ками информации в системах телеконтроля являются датчики, регистрирующие приборы и ЭВМ, а в системах телеуправления программные устройства, ЭВМ и человек, управляющий объектом на расстоянии;

распределитель (шифратор) - шифрует передаваемую информацию, так как по каналу связи одновременно передается информация о нескольких параметрах объекта или же необходимо упpaвлять несколькими ОУ;

передатчик - преобразует управляемый параметр в сигнал, пе­редаваемый по выбранному каналу связи;

канал связи - обеспечивает передачу закодированного сигнала на требуемое расстояние. В качестве каналов связи применяют линии связи (телефонные, телеграфные, радиолинии) и линии электропередач низкого и высокого напряжения;

приемник - воспринимает сигналы передатчика по каналам связи и преобразует их в сигналы для избирателя;

избиратель (дешифратор) - дешифрует закодированные сигналы, переданные по каналу связи;

получатель информации - измерительные, регистрирующие и сигнализирующие приборы в системах телеконтроля и исполнительные механизмы ОУ в системах телеуправления.

Система элементов, обеспечивающая сбор, хранение и выдачу в каналы связи сигналов контроля параметров ОУ, а также вос­принимающая сигналы управления его параметрами, представляет собой пункт контроля.

Для передачи информации по каналам связи системы телемеханики используются ток или напряжение с такими качественно различными характеристиками, как полярность, амплитуда, дли­тельность импульсов или пауз, частота или фаза сигнала.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]