
- •Электрический заряд, его свойства, закон Кулона.
- •Напряженность электрического поля. Свойства линий напряженности электрического поля.
- •Линии напряженности
- •Картины силовых линий
- •Принцип суперпозиции. Поле диполя.
- •Поток вектора напряженности. Теорема Гаусса.
- •Теорема Остроградского-Гаусса для электростатического поля.
- •Работа сил электростатического поля при перемещении зарядов. Циркуляция вектора напряженности.
- •Потенциал, разность потенциалов. Эквипотенциальные поверхности. Связь между напряженностью и потенциалом.
- •Полярные и неполярные диэлектрики. Поляризация диэлектриков. Вектор поляризации.
- •Электрическое поле в диэлектрике. Диэлектрические проницаемость и восприимчивость.
- •Теорема Гаусса для электростатического поля в диэлектрике. Вектор электрического смещения.
- •Распределение зарядов в проводнике. Проводник во внешнем электрическом поле. Электростатическая защита.
- •Электрическая емкость еудиненного проводника. Конденсаторы.
- •Энергия заряженных проводников и электростатического поля.
- •Основные характеристики электричесого тока. Уравнение непрерывности.
- •Гидродинамика
- •Квантовая механика
- •Основы классической теории электропроводимости металлов.
- •Электрродвидущая сила. Закон Ома для неоднородного участка цепи.
- •Работа и мощность постоянного тока. Тепловое действие тока. Закон Джоуля-Ленца.
- •Магнитное поле. Действие магнитного поля на движущиеся заряженные частицы. Сила Лоренца. Магнитное поле движущихся зарядов.
- •Применение силы Лоренца
- •В электроприборах
- •В ускорителях заряженных частиц
- •Графическое изображение магнитных полей. Магнитный поток. Закон ампера. Взаимодействие параллельных токов.
- •Принцеп суперпозиции магнитных полей. Закон Био-Савара-Лапласа. Магнитное поле прямого тока (вывод). Магнитное поле кругового тока.
- •34. Применение закона Био-Савара-Лапласса для расчета магнитных полей.
- •Работа, совершаемая при перемещении проводника и контура с током в магнитном поле.
- •Закон полного тока для магнитного поля. Магнитное поле соленоида и торойда.
- •Движение заряженный частиц в продольном и поперечном электрическом поле.
- •Движение заряженных частив в однородном магнитном поле. Движение заряженных частиц в однородном магнитном поле
- •Магнитное поле в веществе. Магнитные моменты в атоме. Атом в магнитном поле. Теорема Лармора.
- •Закон полного тока для магнитного поля в веществе.
- •Электромагнитная индукция. Закон фарадея для эдс индукции. Правила Ленца.
- •Эдс индукции, возникающая на концах проводника при его движении в магнитном поле.
- •Индуктивность контура. Явление самоиндукции, индуктивность соленоида.
- •Ток при размыкании и замыкании цепи.
Эдс индукции, возникающая на концах проводника при его движении в магнитном поле.
ЭДС индукции в движущемся проводнике
Допустим, что в одноpодном магнитном поле с постоянной скоpостью v под углом a к напpавлению поля движется пpоводящий стеpжень, оpиентиpованный пеpпендикуляpно к силовым линиям поля . На каждый электpон пpоводимости (стеpжень металлический) действует сила Лоpенца, напpавленная вдоль стеpжня. Под действием этой силы электpоны пpидут в движение и станут накапливаться на ближнем к нам конце стеpжня. Дальний от нас конец потеpяет электpоны, т.е. заpядится положительно.
На концах стеpжня длиной l возникнет pазность потенциалов. Такой пpоводник пpедставляет собой своеобpазный источник тока (если его замкнуть, то потечет ток), и pазность потенциалов пpедставляет по сути pазность потенциалов на электpодахpазомкнутого источника тока, т.е. электpодвижущую силу.
|e|= vlBsin a
Направление индукционного тока, возникающего в прямолинейном проводнике при его движении в магнитном поле, определяется по правилу правой руки : если правую руку расположить вдоль проводника так, чтобы линии магнитной индукции входили в ладонь, а отогнутый большой палец показывал направление движения проводника, то четыре вытянутых пальца укажут направление индукционного тока в
Индуктивность контура. Явление самоиндукции, индуктивность соленоида.
Электрический
ток, который течет в замкнутом контуре,
создает вокруг себя магнитное поле,
индукция которого, согласно закону
Био-Савара-Лапласа, пропорциональна
току. Сцепленный с контуром магнитный
поток Ф поэтому прямо пропорционален
току I в контуре:
(1)
где
коэффициент пропорциональности L
называется индуктивностью
контура.
При
изменении в контуре силы тока будет
также изменяться и сцепленный с ним
магнитный поток; значит, в контуре будет
индуцироваться э.д.с. Возникновение
э.д.с. индукции в проводящем контуре при
изменении в нем силы тока
называетсясамоиндукцией.
Из
выражения (1) задается единица
индуктивности генри (Гн):
1 Гн — индуктивность контура, магнитный
поток самоиндукции которого при токе
в 1 А равен 1 Вб: 1 Гн = 1 Вб/с = 1 В•c/А
.
Вычислим
индуктивность бесконечно длинного
соленоида. Полный магнитный поток сквозь
соленоид (потокосцепление) равен
μ0μ(N2I/l)S
. Подставив в (1), найдем
(2)
т.
е. индуктивность соленоида зависит от
длины l солениода,
числа его витков N, его , площади S и
магнитной проницаемости μ вещества, из
которого изготовлен сердечник
соленоида.
Доказано,
что индуктивность контура зависит в
общем случае только от геометрической
формы контура, его размеров и магнитной
проницаемости среды, в которой он
расположен, и можно провести аналог
индуктивности контура с электрической
емкостью уединенного проводника, которая
также зависит только от формы проводника,
его размеров и диэлектрической
проницаемости среды.
Найдем,
применяя к явлению самоиндукции закон
Фарадея, что э.д.с. самоиндукции
равна
Если
контур не претерпевает деформаций и
магнитная проницаемость среды остается
неизменной (в дальнейшем будет показано,
что последнее условие выполняется не
всегда), то L = const и
(3)
где
знак минус, определяемый правилом Ленца,
говорит о том, что наличие
индуктивности в контуре приводит к
замедлению изменения тока в нем.
Если
ток со временем увеличивается, то
(dI/dt<0) и ξs>0
т. е. ток самоиндукции направлен навстречу
току, обусловленному внешним источником,
и замедляет его увеличение. Если ток со
временем уменьшается, то (dI/dt>0) и ξs<0
т. е. индукционный ток имеет такое же
направление, как и уменьшающийся ток в
контуре, и замедляет его уменьшение.
Значит, контур, обладая определенной
индуктивностью, имеет электрическую
инертность, заключающуюся в том, что
любое изменение тока уменьшается тем
сильнее, чем больше индуктивность
контура.
В соленоиде поле однородно и вычислить поток вектора магнитной индукции, пронизывающий N витков соленоида, особенно просто:
.
Напомним,
что здесь l, S — длина и
площадь сечения соленоида, n =
—
число витков на единице длины соленоида.
. (10.4)
Магнитный поток, пронизывающий витки соленоида, пропорционален току, протекающему по его обмотке.
Можно показать, что этот частный результат справедлив не только для соленоида, но и для любого электрического контура.