
- •1. Косозубая зубчатая передача: основные характеристики, достоинства и недостатки.
- •2. Косозубая передача. Силы и моменты на косозубом зубчатом колесе.
- •3. Передача скоростей в косозубой зубчатой передаче.
- •4. Эквивалентное зубчатое колесо. Определение модуля косозубого зубчатого колеса.
- •5. Рейка. Реечная передача: основные характеристики.
- •6. Коническая зубчатая передача: основные характеристики.
- •7. Коническое зубчатое колесо: основные геометрические характеристики.
- •8. Червячная передача: состав и назначение, основные характеристики, достоинства и недостатки.
- •9. Червячная передача. Передача скоростей в червячной передаче.
- •Силы и моменты в червячной передаче при ведущем червяке.
- •11.Силы и моменты в червячной передаче при ведущем червячном колесе.
- •12. Самоторможение в червячной передаче.
- •13. Планетарные механизмы: состав, назначение, основные характеристики, достоинства и недостатки.
- •14. Определение передаточного отношения планетарного механизма методом обращения движения.
- •15. Волновая передача: особенности конструкции, характеристики, достоинства и недостатки.
- •16. Рычажные механизмы: конструкции, характеристики, достоинства и недостатки.
- •17. Синусный рычажный механизм: конструктивная схема, основные характеристики, достоинства и недостатки, передаточное отношение механизма
- •18. Тангенсный механизм: конструктивная схема, основные характеристики механизма, достоинства и недостатки, передаточное отношение механизма.
- •19. Поводковый механизм схема ,характеристики ,достоинства, недостатки, передаточное отношение механизма.
- •20. Кулисный механизм схема ,характеристики, достоинства ,недостатки, передаточное отношение механизма.
- •21. Кривошипно-ползунный механизм схема, характеристики, достоинства ,недостатки, передаточное отношение механизма.
- •23. Червячная передача: червяк, основные характеристики.
- •25. Планетарный механизм: Схема 2,функционирование, основные характеристики, определение передаточного отношения.
- •26.Грейферный механизм: конструктивная схема, функционирование, основные характеристики, передаточное отношение.
- •27. Передача Винт-гайка: состав,назначение, различные схемы функционирования передачи, достоинства,недостатки.
- •5.3 Недостатки передачи винт-гайка
- •2 8. Дифференциальная передача винт-гайка.
- •29. Интегральная передача винт-гайка.
12. Самоторможение в червячной передаче.
М1- момент на валу червяка,М2 — момент нагрузки на валу колеса.
Движение зуба колеса по витку червяка это перемещение по наклонной плоскости, расположенной под углом γ к горизонтали. Сила F2 момент нагрузки М2 и диаметр d2 известны.При отсутствии движения сила F2 уравновешивается силой F'1 = F2tgγ . При движении возникает сила трения FТР, отклоняющая проекцию Fn на угол трения ρ.
F2= F1 /tg (γ-ρ)
Следовательно, при γ=ρ передача невозможна. Это условие отсутствияпередачи называется самоторможением. т. е. Движение возможно при γ > ρ.
Это обеспечивает плавность хода, бесшумность, возможность исключения обратной передачи вращения, низкий КПД из-за больших потерь на трение в зацеплении
13. Планетарные механизмы: состав, назначение, основные характеристики, достоинства и недостатки.
Передачи, имеющие зубчатые или фрикционные колеса с перемещающимися осям, называют планетарными. Эти подвижные колёса подобно планетам Солнечной системы вращаются вокруг своих осей и одновременно перемещаются вместе с осями, совершая плоское движение, называются они сателлитами (лат. satellitum – спутник). Подвижные колёса катятся по центральным колёсам (их иногда называют солнечными колёсами), имея с ними внешнее, а с корончатым колесом внутреннее зацепление. Оси сателлитов закреплены в водиле и вращаются вместе с ним вокруг центральной оси.
Наиболее распространена зубчатая однорядная планетарная передача (рис.60). Она состоит из центрального колеса 1 с наружными зубьями, неподвижного (центрального) колеса 2 с внутренними зубьями и водила на котором закреплены оси планетарных колес g (или сателлитов).
Рис.60. Планетарная передача
Водило вместе с сателлитами вращается вокруг центральной оси, а сателлиты обкатываются по центральным колесам и вращаются вокруг своих осей, совершая движения, подобные движению планет. При неподвижном колесе 2 движение передается от колеса 1 к водилу h или наоборот.
Планетарную передачу успешно применяют в транспортном машиностроении, станкостроении, приборостроении.
Достоинства и недостатки планетарных передач.
Основное достоинство — широкие кинематические возможности, позволяющие использовать передачу в качестве редуктора коробки скоростей, передаточное число в которой изменяется путем поочередного торможения различных звеньев, и как дифференциальный механизм.
- Планетарный принцип позволяет получать большие передаточные числа (до тысячи и больше) без применения многоступенчатых передач.
- Эти передачи компактные и имеют малую массу. Переход от простых передач к планетарным позволяет во многих случаях снизить их массу в 4 раза и более.
- Сателлиты в планетарной передаче расположены симметрично, а это снижает нагрузки на опоры (силы в передаче взаимно уравновешиваются), что приводит к снижению потерь и упрощает конструкцию опор.
- Эти передачи работают с меньшим шумом, чем обычные зубчатые и имеют более лёгкое управление и регулирование скорости;
- Имеют малый шум вследствие замыкания сил в механизме.
Основные недостатки: повышенные требования к точности изготовления и монтажа (для обеспечения сборки планетарных передач необходимо соблюдать условие соосности (совпадение геометрических центров колёс); условие сборки (сумма зубьев центральных колёс кратна числу сателлитов) и соседства (вершины зубьев сателлитов не соприкасаются друг с другом); резкое снижение КПД передачи с увеличением передаточного отношения.
Характеристики: 1)Число сателитов k. 2).Соосность входного и выходного вала. 3).Равенство углов между сателитами. 3).Условие соседства при k>3.
Передаточное отношение.
Для определения передаточного отношения планетарной передачи используется метод Виллиса — метод останова водила.
Передаточное отношение планетарной передачи (см. рис. 60)
(33)
где
и
—
угловые скорости колес 1
и 2
относительно водила
h;
и
— числа зубьев этих
колес.
Для реальной планетарной
передачи (колесо 2
закреплено неподвижно,
колесо 1 — ведущее,
водило h
ведомое) при
из формулы (36) получим
или
(34)
Для однорядной планетарной
передачи
,
для многоступенчатых
,
для кинематических передач
.
Чем больше передаточное
отношение планетарной передачи, тем
меньше КПД (0,99...0,1).
Расчет на контактную прочность зубьев планетарных передач проводится по аналогии с расчетом обыкновенных зубчатых передач отдельно для каждого зацепления (см. рис.60): пара колес 1—g (внешнее зацепление) и g—2 — (внутреннее). Для таких передач достаточно рассчитать только внешнее зацепление, так как модули и силы в зацеплениях одинаковые, а внутреннее зацепление прочнее внешнего.
Проектировочный расчет планетарной передачи на контактную усталость активных поверхностей зубьев проводится по следующей формуле:
(35)
где d1
— делительный диаметр
ведущего звена (шестерни), мм;
Kd
= 78 МПа — вспомогательный
коэффициент (рассматриваются стальные
прямозубые колеса); T2
— вращающий момент на шестерне, Нмм;
— коэффициент нагрузки
(см. табл.4);
— коэффициент, учитывающий
неравномерность распределения нагрузки
среди сателлитов;
—
передаточное отношение;
— коэффициент длины зуба (ширины колеса);
—
допускаемое контактное напряжение,
МПа.
При расчете планетарных
передач выбор числа зубьев колес зависит
не только от передаточного отношения
,
но и от условий собираемости
передач. При этом
сумма зубьев центральных колес должна
быть кратной числу сателлитов (лучше
3).