Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
583.doc
Скачиваний:
0
Добавлен:
03.09.2019
Размер:
3.05 Mб
Скачать

583. Одна й та сама машина постійного струму в принципі може працювати і як генератор, і як двигун. (Ця властивість машини постійного струму, що називається оборотністю, дає змогу не розглядати окремо будову генератора чи двигуна.) Проте кожну електричну машину завод випускає з певним призначен­ням — працювати тільки як генератор або тільки як двигун. Дуже рідко використовують машини постійного струму, при­значені для роботи як генератором, так і двигуном.

Генератори постійного струму застосовують тоді, коли по­трібно мати самостійне джерело струму, наприклад для жив­лення деяких видів електромагнітів, електромагнітних муфт, електродвигунів, електролізних ванн, зварювальних установок тощо.

Електродвигуни постійного струму застосовують тоді, коли потрібно плавно регулювати швидкість, наприклад у тролей­бусах, електровозах, деяких типах підйомних кранів, у при­строях автоматики.

Статор машини постійного струму складається зі станини (рис. 62) і осердя. Станину виготовляють з маловуглецевої сталі, яка має значну магнітну проникність. Тому станина є також і магнітопроводом. Одночасно це основна деталь, що об'єднує інші деталі й складальні одиниці машини в єдине ціле. Так, до станини із середини прикріплюють болтами полюси, котрі складаються з осердя, полюсного наконечника і котушки.

Рис. 62. Будова машини постійного струму:

1 — задній підшипниковий щит; 2 — затискачі; 3 — станина; 4 — головний полюс; 5 — обмотка головного полюса; 6 — вентилятор; 7 — обмотка якоря; 8 — осердя якоря; 9 — колектор; 10 — вал; 11 — траверса із щитковим меха­нізмом; 12 — передній підшипниковий щит

Рис. 63. Якір машини постійного струму:

а — якір без обмотки; б — сталевий лист осердя якоря; 1 — натискні шайби; 2 — зубець; З — паз; 4 — вентиляційний отвір

Розрізняють основні й додаткові полюси. Основні полюси збуджують магнітне поле; тому обмотки їх котушок називають обмотками збудження. Додаткові полюси встановлюють у ма­шинах підвищеної потужності (понад 1 кВт) для поліпшення роботи ма­шини; обмотку додаткових полюсів з'єднують послідовно з обмоткою ротора (якоря).

Ротор (якір) (рис. 63) машини по­стійного струму складається з осер­дя й обмотки. Осердя якоря наби­рають з тонких листів електротехніч­ної сталі, ізольованих один від одного лаковим покриттям, що зменшує втра­ти на вихрові струми. У пази осердя вкладають обмотку якоря. В осерді якоря роблять вентиляційні канали. Щоб струм від обмотки якоря в зовнішнє коло (у генераторі) або із зо­внішнього кола до обмотки якоря (у двигуні) проходив в одному й тому самому напрямі, у машині постійного струму встановлюють колектор (рис. 64). Набирають його з мідних пластин, ізольованих одна від одної міканітовими прокладками. Кожну пластину колектора з'єднують з одним або кількома витками обмотки якоря. Осердя якоря і колектор закріплюють на одному валу (див. рис. 62). Отже, колектор — це пристрій, який кон­структивно об'єднаний з якорем (ротором) електричної машини і є механічним перетворювачем частоти. По ізольованих один від одного і приєднаних до витків обмотки якоря пластинах, що становлять колектор, ковзають струмознімні щітки (рис. 65). Через ці щітки й колектор обмотка якоря приєднується до зовнішнього електричного кола. Щітки вставляють в обойми щіткотримача і притискують до колектора пружинами.

Рис. 64. Будова колектора:

1 — корпус; 2 — болт; З — натискне кільце; 4 — міканітова прокладка; 5 — «пів­ник»; 6 — «ластівчин хвіст»; 7 — колекторна пластина 130

Рис. 65. Щітковий механізм машини постійного струму:

а — траверса; б — щіткотримач; 1 — щітковий палець; 2 — ізоляція кільця від траверси; З — стопорний болт; 4 — мідний провід; 5 — натискні пластини; 6 — місце розміщення пружини; 7 — обойма; 8 — щітка

Під час роботи машини щітки ков­зають по колектору. Щіткотримачі кріплять до траверси. Принцип дії цієї машини базується на двох основних законах електрики й магнетизму, які діють у ній одночасно: законі електромагнітної індукції й законі електромагнітної взаємодії струму й магнітного поля. Закон електромагнітної індукції визначає величину і напрямок електрорушійної сили в контурі із провідників, які рухаються в магнітному полі. Закон електромагнітної взаємодії струму в провіднику і магнітного поля є основним для пояснення рухової дії електричної машини. В електричній машині провідники рухаються перпендикулярно відносно магнітних ліній поля. Для визначення напрямку електрорушійної сили (е.р.с.), яка індукується у провіднику і механічної дії струму в ньому служать мнемонічні правила: правило правої руки - для визначення напрямку е.р.с. при нерухомому в просторі магнітному полі і провіднику, який рухається, і правило лівої руки - для визначення напрямку механічної дії струму при тій же умові. 

584. Конструктивно машина постоянного тока состоит из неподвижного статора (индуктора) с полюсами и вращающегося ротора (якоря) с коллектором (рис. 2.1,а). Статор является источником магннтного поля и механическим остовом машины, якорь- часть машины, в обмотке которой индуцируется э. д. с.

На одном валу с якорем жестко закрепляется коллектор (рис. 2.1,б), электрически соединенный с его обмоткой. Коллектор - характерная деталь машины постоянного тока. Его медных пластин касаются неподвижные угольно-графитовые щетки, размещенные в щеткодержателях (рис. 2.1,в) на траверсе и электрически соединенные с внешней цепью. Во избежание искрения щетки тщательно притираются к коллектору, а их умеренный нажим должен быть отрегулирован.

Принцип действия машин постоянного тока основан на законе электромагнитной индукции и законе Ампера. Магнитное поле машины (рис. 2.1,д) создается постоянным током (током возбуждения) в обмотке полюсов или постоянными магнитами в машинах малой мощности. Его силовые линии замыкаются через стальные станину, сердечники полюсов и сердечник якоря, дважды преодолевая на своем пути воздушный зазор между ними. Магнитная цепь четырехполюсной машины постоянного тока разветвленная, симметричная. Плоскость, проходящую через ось машины под углом а, при котором она перпендикулярна к силовым линиям, называют геометрической нейтралью(при а. = 0 и 772 на рис. 2.1,г).

Существует два режима работы эл. двигателей

а: режим генератора

б: режым двигателя

В режиме генератора машина преобразует механическую энергию в электрическую: к обмотке возбуждения статора подводится по­стоянный ток возбуждения, а якорь вращается каким-либо первичным двигателем. При этом провода обмотки якоря пересекают магнитные силовые линии полюсов и в них индуцируются э. д. с. С помощью коллектора и щеток, которые являются механическим выпрямителем, эти переменные пульсирующие э. д. с. суммируются в постоянную по значению и направлению э. д. с. машины Е. Если к щеткам подклю­чить приемник, то в нем установится постоянный ток I.

В режиме двигателя машина преобразует электрическую энергию в механическую: к якорю и к обмотке возбуждения машины одновре­менно подводится постоянный ток от источника. Взаимодействие маг­нитного поля полюсов статора с током обмотки якоря создает вращаю­щий электромагнитный момент, который и приводит в движение якорь (ротор).

585. Сердечник якоря имеет шихтованную конструкции набирается из штампованных пластин тонколистовой электротехнической стали. Листы покрывают изоляционным лаком, собирают в пакет и запекают. Готовый сердечник напрессовывают на вал якоря. Такая конструкция сердечника якоря позволяет значительно ослабить в нем вихревые токи, возникающие в результате его перемагничивания в процессе вращения в магнитном поле. На поверхности якоря имеются продольные пазы, в которые укладывают обмотку якоря

586.

587. Основными элементами коллектора являются пластины трапецеидального сечения из твердотянутой меди, собранные таким образом, что коллектор приобретает цилиндрическую форму. В зависимости от способа закрепления коллекторных пластин различают два основных типа коллекторов: стальными конусными шайбами и на пластмассе. В процессе работы машины рабочая поверхность коллектора постепенно истирается щетками. Чтобы при этом миканитовые прокладки не выступали над рабочей поверхностью коллектора, что вызвало бы вибрацию щеток и нарушение работы машины, между коллекторными пластинами фрезеруют пазы (дорожки) на глубину до 1,5 мм Коллектор машины постоянного тока собирается из клиноподобных пластин холоднокатаной меди. Пластины изолируют одну от другой прокладками из коллекторного миканита толщиной 0,5 - 1 мм. Нижние (узкие) края пластин имеют вырезы в виде "ласточкина хвоста", которые служат для крепления медных пластин и миканитовой изоляции. Коллекторы крепят нажимными конусами двумя способами: при одном из них усилие от зажима передается только на внутреннюю поверхность "ласточкина хвоста", при втором — на "ласточкин хвост" и конец пластины.Коллекторы с первым способом крепления называют арочными, со вторым — клиновыми. Наиболее распространены арочные коллекторы.

Коллектор в электрических машинах выполняет роль выпрямителя переменного тока в постоянный (в генераторах) и роль автоматического переключателя направления тока во вращающихся проводниках якоря (в двигателях).Когда магнитное поле пересекается только двумя проводниками, образующими рамку, коллектор будет представлять собой одно кольцо, разрезанное на две части, изолированные одна от другой. В общем случае каждое полукольцо носит название коллекторной пластины.Начало и конец рамки присоединяются каждый к своей коллекторной пластине. Щеткирасполагаются таким образом, чтобы одна из них была всегда соединена с проводником, который будет двигаться у северного полюса, а другая — с проводником, который будет двигаться у южного полюса. 

588. Если обмотка якоря с помощью щеток замкнута через внешнюю цепь, то в этой цепи, а также в обмотке якоря возникает ток 1а. В обмотке якоря этот ток будет переменным, и кривая его по форме аналогична кривой э. д. с. (рис. 1-4, а). Однако во внешней цепи направление тока будет постоянным, что объясняется действием коллектора. Действительно, при повороте якоря и коллектора (рис. 1-1) на 90° и изменении направления э. д. с. в проводниках одновременно происходит также смена коллекторных пластин под щетками. Вследствие этого под верхней щеткой всегда будет находиться пластина,соединенная с проводником, расположенным под северным полюсом, а под нижней

щеткой — пластина, соединенная с проводником, расположенным под южным полюсом. В результате этого полярность щеток и направление тока во внешней цепи остаются неизменными.

Таким образом, в генераторе коллектор является механическим выпрямителем, который преобразовывает переменный ток обмотки якоря в постоянный ток во внешней цепи.

В режиме двигателя коллектор превращает потребляемый из внешней цепи постоянный ток в переменный ток в обмотке якоря и работает, таким образом, в качестве механического инвертора тока.

589

Обмотка якоря является важнейшим элементом машины и должна удовлетворять следующим требованиям:

1) обмотка должна быть рассчитана на заданные величины напряжения и тока нагрузки, соответствующие номинальной мощности;

2) обмотка должна иметь необходимую электрическую, механическую и термическую прочность, обеспечивающую достаточно продолжительный срок службы машины (до 15—20 лет);

3) конструкция обмотки должна обеспечить удовлетворительные условия токосъема с коллектора, без вредного искрения;

4) расход материала при заданных эксплуатационных показателях (к. п. д. и др.) должен быть минимальным;

5) технология изготовления обмотки должна быть по возможности простой.

В современных машинах постоянного тока якорная обмотка укладывается в пазах на внешней поверхности якоря. Такие обмотки называются барабанными. Обмотки якорей подразделяются на петлевые и волновые. Существуют также обмотки, которые представляют собой сочетание этих двух обмоток.Основным элементом каждой обмотки якоря является секция, которая состоит из одного или некоторого количества последовательно соединенных витков и присоединена своими концами к коллекторным пластинам (рис. 3-1, 3-2).В обмотке обычно все секции имеют одинаковое количество витков. На схемах обмоток секции для простоты изображаются всегда одновитковыми.

Обмотки якорей могут быть петлевыми или волновыми, простыми или сложными.

590. Петлевые обмотки якоря

Основные понятия. Обмотка якоря машины постоянного тока представляет собой замкнутую систему проводников, определенным образом уложенных на сердечнике якоря и присоединенных к коллектору.

Элементом обмотки якоря является секция (катушка), присоединенная к двум коллекторным пластинам. Расстояние между пазовыми частями секции должно равно или мало отличаться от полюсного деления (см. рисунок):

где – диаметр сердечника якоря.

Обмотки якоря обычно выполняют двухслойными. Они характеризуются следующими параметрами: числом секций ч ислом пазов (реальных) числом секций, приходящихся на один паз, числом витков секции числом пазовых сторон в обмотке числом пазовых сторон в одном пазу

В ерхняя пазовая сторона одной секции и нижняя пазовая сторона другой секции, лежащие в одном пазу, образуют элементарный паз. Число элементарных пазов в реальном пазе определяется числом секций, приходящихся на один паз:

Простая петлевая обмотка. При простой петлевой обмотке каждую секцию присоединяют к соседним коллекторным пластинам (рис. 97). Например, начало 1-й секции присоединяют к коллекторной пластине КП1, а конец ее соединяют с соседней коллекторной пластиной КП2 и началом рядом лежащей 2-й секции. Далее

Рис. 95. Форма якорных катушек при волновой (а) и петлевой (б) обмотках: 1, 4 — пазовые части (верхняя и нижняя стороны); 2, 5 — задняя и передняя лобовые части; 3 — задняя головка; 6 — концы секций, припаиваемые к коллектору

Рис. 96. Схемы простой волновой обмотки четырехполюсной машины

конец 2-й секции присоединяют к следующей коллекторной пластине и к началу соседней секции и т. д. до тех пор, пока обмотка не замкнется, т. е. пока не придут к началу 1-й секции. В этой обмотке каждая последующая секция расположена рядом с предыдущей, а якорная катушка имеет форму петли (рис. 95,б), откуда получила название обмотка.

В простой петлевой обмотке секции, расположенные под каждой парой полюсов, образуют две параллельные ветви, поэтому число параллельных ветвей по всей обмотке 2а равно числу полюсов 2р:

2a = 2p (56′)

Рис. 97. Общий вид петлевой обмотки (а) и схема соединения ее секций (б)

Условие 2а=2р выражает основное свойство простой петлевой обмотки: чем больше число полюсов, тем больше параллельных ветвей имеет обмотка, следовательно, тем больше щеточных пальцев должно быть в машине. На рис. 98, а приведена в качестве примера развернутая в плоскость схема простой петлевой обмотки якоря че-тырехполюсной машины, имеющей 24 секции, а на рис. 98, б — эквивалентная схема этой обмотки, показывающая последовательность соединения ее секций и образующиеся параллельные ветви (обозначение проводников и коллекторных пластин такое же, как и на рис. 96).

С ложная петлевая обмотка. При необходимости получить петлевую обмотку с большим числом параллельных ветвей, как это требуется, например, в низковольтных машинах постоянного тока, применяют сложную петлевую обмотку. Такая обмотка представляет собой несколько (обычно две) простых петлевых обмоток, уложенных на одном якоре и присоединенных к одному коллектору. Число параллельных ветвей в сложной петлевой обмотке:

г де - число простых петлевых обмоток, из которых составлена сложная обмотка (обычно ). Ширина щеток при сложной петлевой обмотке принимается такой, чтобы каждая щетка одновременно перекрывала коллекторных пластин, т.е. столько пластин, сколько простых обмоток в сложной. При этом простые обмотки оказываются присоединенными параллельно друг другу.

На рисунке показана развернутая схема сложной петлевой обмотки, состоящая из двух простых ( ): Результирующий шаг обмотки по якорю и шаг по коллектору сложной петлевой обмотки принимают равным

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]