Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МУ практич. занятия.doc
Скачиваний:
10
Добавлен:
02.09.2019
Размер:
1.51 Mб
Скачать

Задачи.

Задача 2.1. Определить массовый состав сухого воздуха, его удельную газовую постоянную, кажущуюся относительную молекулярную массу и плотность при абсолютном давлении 110 кПа и температуре 20% кислорода и 79% азота.

Решение. Между массовыми и объемными составами газовой смеси существует зависимость

Кажущуюся молекулярную массу газовой смеси можно определить по формуле 2.11

мсм== =0,21·32+0,79·28=28,84

Тогда

=0,79 ·28/28,84=0,767;

=1-0,767=0,233.

Удельная газовая постоянная смеси определяется по формуле 2.14

Rсм=8314,3/Мсм=8314,3/28,84=288,3 кДж/(кг·K)

Плотность газовой смеси определяем из формулы

= == 1,182 кг/м3.

Задача 2.2. Смесь двух объемов водорода и одного объема кислорода называют гремучим газом. Определить кажущуюся молекулярную массу, газовую постоянную и массовый состав гремучего газа.

Задача 2.3. Смесь газов состоит из 1,0 м3 генераторного газа и 1,5 м3 воздуха, взятых при нормальных физических условиях. Определить газовую постоянную смеси газов и парциальные давления составляющих смеси. Плотность генераторного газа ρ2 принять равной 1,2 кг/м3.

Задача 2.4. В цилиндр газового двигателя засасывается газовая смесь, состоящая из 20 массовых долей воздуха и одной доли коксового газа в смеси.

Задача 2.5. Анализ продуктов сгорания, произведенный с помощью газоанализатора показал их следующий объемный состав: СО2=12,2%; О2=7,1%; СО=0,4%; N2=80,3%. Определить массовый состав входящих в смесь газов.

Задача 2.6. Определить объем смеси газов при абсолютном давлении 100 кПа и температуре 900С, образовавшийся при смешивании 100 кг топочных газов с 50 кг воздуха. Массовый состав топочных газов со=0,18; qНо=0,08; qо=0,02, и qN=0,72.

3 Теплоемкость газов

Теплоемкостью газа называют количество теплоты, необходимое для повышения его температуры на 1 К. Теплота, затраченная на повышение температуры единицы количества газа на 1 К называется удельной теплоемкостью. Принято удельную теплоемкость называть просто теплоемкостью.

В зависимости от выбранной количественной единицы различают теплоемкости: мольную Сm-кДж/(кмоль·К), массовую С – кДж/(кгК), и объемную С’ – кДж/(м3К).

Так как в 1 м3 газа могут содержаться, в зависимости от параметров его состояния, разные количества газа, принято относить 1 м3 газа к нормальным условиям (Р0= 101325 Па, Т0=273,15 К).

Между теплоемкостями существует следующее соотношение

С= ; С=; С= ; С0·С , 3.1

где ρ0 – плотность газа при нормальных условиях.

Теплоемкость газа зависит от его температуры. По этому признаку отличают истинную и среднюю теплоемкость.

Если q – удельное количество теплоты, сообщаемой единице количества вещества (или отнимаемый от него) при изменении температуры от t1 до t2 , то величина

=q/(t2- t1)=q/( Т2- Т1), 3.2

Представляет собой среднюю теплоемкость в пределах от t2 до t1.

Предел этого отношения, когда разность температур стремиться к нулю, называют истинной теплоемкостью. Аналитически последняя определяется как

3.3

Теплоемкость зависит от вида процесса сообщаемая газу теплоты.

Для теплотехнических расчетов особое значение имеют теплоемкости газов при постоянном давлении и при постоянном объеме .

Между массовыми теплоемкостями и существуют соотношения:

3.4

где к- показатель адиабаты.

Постоянная теплоемкость политропного процесса с показателем n находитcя из выражения:

3.5

Для приближения расчетов при невысоких температурах теплоемкость можно считать постоянной.

Таблица 3.1 Приближенные значения мольных теплоемкостей при -const, р-const

Газы

Теплоемкость,КДж/(кмоль∙К)

Теплоемкость,

КДж/(кмоль∙К)

Показатель адиабаты,

К

Одноатомные

20,93

12,56

1,67

Двухатомные

29,31

20,93

1,4

Трех- и многоатомные

37,68

29,31

1,2

При точных расчетах учитывают криволинейную зависимость теплоемкости от температуры и пользуются табличными значениями средних теплоемкостей в интервале от 0°С до t °С (Приложение1). Их отмечают сверху черточкой и указанием границ температур. Например : и т.д.

Менее точные расчеты, применяемые в технике получаются при использовании линейной зависимости теплоемкости от температуры (Приложение 2).

Средняя теплоемкость в этом случае определяется в интервале температур от t1 до t2 по уравнению

3.6

где a и b- величины, зависящие от физических свойств газа и постоянные для данного газа.

При пользовании таблицами значения истинных теплоемкостей, а также средних теплоемкостей в пределах от 0°С до t°С берутся непосредственно из таблиц, причем в необходимых случаях проводится интерполирование.

Количество теплоты, которое необходимо затратить для нагревания или охлаждения рабочих тел определяются из соотношений :

а) для 1 кг :

3.7

для m кг

3.8

б) для 1 нормального кубического метра газа

; 3.9

для объема Vo в м3:

3.10

В зависимости от условий, при которых протекают нагревание (охлаждение) газа (V- const , p- const ) в формулах 3.6...З.10 ставятся соответствующие значения теплоемкости.

Теплоемкость смеси идеальных газов:

массовая ; 3.11

объемная 3.12