
- •Часть 1
- •Предисловие
- •Введение
- •1. Аэрогеодезия, её содержание
- •2. Аэроизыскания
- •3. Аэросъёмка, её виды и методы
- •4. Исходные определения
- •5. Краткий исторический очерк развития
- •Глава 1. Основы аэро и космической фотосъемки
- •1. Общие понятия об аэрофотосъемке
- •2. Аэрофотоаппарат
- •3. Фотографический объектив и его характеристики
- •4. Светочувствительные слои и их основные показатели
- •5. Виды аэрофотосъемки. Носители съемочной аппаратуры
- •6. Основные технические требования
- •7. Специальное традиционное аэросъемочное оборудование
- •8. Аэрофотосъемочные работы
- •9. Современная аэрофотосъёмка
- •10. Космическая съёмка
- •- Приложение № 3. Ортотрансформирование данных со спутника OrbView-3 в программной среде pci Geomatica;
- •Глава 2. Геометрические основы фотограмметрии
- •1. Понятие о центральной проекции
- •2. Элементы центральной проекции
- •3. Перспектива точки и прямой предметной плоскости
- •4. Теорема Шаля. Эпюры
- •5. Перспектива отвесной прямой
- •6. Перспектива сетки квадратов
- •Контрольные вопросы
- •Глава 3. Теория одиночного снимка
- •Системы координат снимка.
- •Системы координат объекта.
- •3. Формулы связи координат соответственных точек
- •4. Формулы связи координат соответственных точек
- •Формулы связи координат соответственных точек
- •6. Масштаб изображения на аэроснимке
- •7. Линейные искажения, вызванные
- •8 . Линейные искажения, вызванные влиянием рельефа местности
- •9. Искажение изображения площади
- •10. Физические источники искажения изображения
- •Контрольные вопросы
- •Глава 4. Теория пары снимков
- •Формулы связи координат точек местности и их
- •Из рис.4.1 следует, что
- •Формулы связи координат точек местности и
- •Определение координат точек местности по
- •Условие, уравнения и элементы взаимного
- •5. Определение элементов взаимного ориентирования.
- •6. Построение фотограмметрической модели.
- •7. Внешнее ориентирование модели.
- •8. Определение элементов внешнего ориентирования
- •9.Точность определения координат точек объекта
- •Контрольные вопросы
- •Глава 5. Пространственная фототриангуляция
- •Назначение и классификация методов
- •2. Построение и уравнивание маршрутной и блочной
- •3. Построение и уравнивание маршрутной и
- •4. Построение и уравнивание маршрутной и блочной сети
- •5. Технология построения сетей фототриангуляции
- •6. Линеаризация условных уравнений
- •7. Решение линеаризованных уравнений
- •8. Требования к опорным точкам
- •9. Программы построения и уравнивания
- •Контрольные вопросы
- •Глава 6. Способы наблюдения и измерения стереомодели
- •1. Глаз – оптическая и физиологическая система
- •2. Монокулярное и бинокулярное зрение
- •3. Стереоскопическое зрение
- •4. Способы стереоскопических наблюдений
- •5. Способы измерения снимков и стереомодели
- •6. Стереокомпараторы
- •7. Точность измерений
- •Контрольные вопросы
- •Глава 7. Традиционное трансформирование снимков
- •1. Понятие о трансформировании
- •2. Понятие о традиционном фотомеханическом трансформировании
- •3. Фототрансформаторы
- •4. Трансформирование снимков на фототрансформаторе
- •5. Учет рельефа при фототрансформировании
- •6. Понятие о фотопланах и фотосхемах
- •7. Изготовление фотосхем
- •8. Изготовление фотопланов по традиционной технологии
- •Контрольные вопросы
- •Глава 8. Дешифрирование снимков
- •1. Понятие о дешифрировании
- •2. Дешифровочные признаки
- •3. Содержание дешифрирования
- •4. Спектральный образ как дешифровочный признак
- •5. Особенности дешифрирования космических
- •1. Особенности дешифрирования космических изображений.
- •Контрольные вопросы
- •Аэрокамера dss (Applanix)
- •Приложение № 3 Ортотрансформирование данных со спутника OrbView-3 в программной среде pci Geomatica Точное и rpc моделирование
- •Библиографический список
- •Оглавление
- •Глава 1. Основы аэро и космической фотосъёмки……..…23
- •Глава 2. Геометрические основы фотограмметрии………66
- •Глава 3. Теория одиночного снимка……………………………77
- •Глава 4. Теория пары снимков…………………………………...95
- •Глава 5. Пространственная фототриангуляция…………...111
- •Глава 6. Способы наблюдения и измерения
- •Глава 7. Традиционное трансформирование снимков....159
- •Учёт рельефа при фототрансформировании………………….166
- •Глава 8. Дешифрирование снимков…………………………….177
2. Аэроизыскания
В технологии системного автоматизированного проектирования объектов строительства (САПР) аэрофотогеодезический метод выступает как один из основных видов изыскательских работ. Этот метод позволяет значительно увеличить производительность полевых работ и перенести основной объём работы по получению информации о местности в комфортные камеральные условия, с широким привлечением для этих целей средств автоматизации и компьютерной техники.
Аэроизыскания – комплекс специальных воздушных, наземных полевых и камеральных работ, направленных на получение исходной топографической, инженерно-геологической, гидрогеологической, гидрометеорологической, экономической и других видов информации, необходимой для разработки проектов объектов строительства.
Опыт, накопленный в области применения аэрометодов при изысканиях, показывает их исключительную эффективность по сравнению с традиционными методами сбора информации как в части значительного снижения трудоёмкости и сокращения сроков изысканий, так и в части широты охвата различных видов информации, необходимой для проектирования. Аэроизыскания выполняют в три этапа: подготовительный, полевой и камеральный.
В подготовительный период осуществляется сбор имеющейся на район изысканий топографической информации и материалов аэросъёмок прошлых лет, на основании которых обосновывают полосу варьирования конкурентносособных вариантов трассы и составляют проект производства аэросъёмочных, полевых и камеральных аэрофотогеодезиеских работ.
В полевой период производят: наземные геодезические работы по созданию планово-высотного обоснования аэросъёмок с определением и закреплением базовых станций; различные виды аэросъёмочных работ, привязку и дешифрирование аэрофотоснимков. Важным видом аэрогеодезических изысканий является дешифрирование – выявление (обнаружение и опознавание) и раскрытие содержания (познания) различных объектов и элементов местности по их изображениям на снимках, их качественных и количественных характеристик, своеобразных свойств и особенностей.
В камеральный период выполняют полную обработку результатов геодезических (спутниковых) измерений, фотограмметрическое сгущение геодезического съёмочного обоснования методами аналитической фототриангуляции, стереофотограмметрические работы по получению информации о рельефе и изготовлению топографических планов и ЦММ в единой системе координат.
3. Аэросъёмка, её виды и методы
Аэросъёмкой называют процесс получения изображений местности с летательных апппаратов. Если её ведут фотоаппаратами, то её называют аэрофотосъёмкой, если с помощью специальных телевизионных или электронных сканирующих устройств, то – электронной или сканерной аэросъёмкой, если с помощью тепловизоров в инфракрасной части спектра, то - тепловой или инфрарасной съёмкой, а если радиолакаторами, при которых получают изображение в отражённых от поверхностных слоёв электромагнитных радиоволн – радиолакационной съёмкой.
Регистрацию изображений местности можно вести в разных зонах спектра электромагнитных волн: видимой с длинами волн (0,38 – 0,78 мкм), ультрафиолетовой ближней (0,28 – 0,32 мкм), инфракрасной (0,18 – 10 мкм), или микрорадиоволновой (0,01 – 100 см). Съёмку выполняют либо в одной зоне электромагнитного излучения, либо одновременно в нескольких.
При инфракрасной аэросъёмке регистрируется электромагнитное излучение в диапазоне длин волн 0,7 – 12 мкм, которое излучают или отражают различные объекты местности. Инфракрасное излучение как носитель информации близко к свету и радиосигналам, зависит от температуры источника излучения, характеризует его вещество и состояние. Оно выявляет внутренние свойства объектов, позволяет изучать процессы в верхнем слое Земли. Инфракрасные системы имеют оптическую часть, приёмное устройство, устройство обработки и выдачи информации. Излучение природной среды в ифракрасной области спектра регистрируется тепловизорами в трёх зонах: ближней (0,7 – 2,5 мкм), средней (3,0 – 5,5) мкм) и дальней (8 – 12 мкм). На практике установлена важность совместного дешифрирования панхроматических и инфракрасных аэрофотоснимков.
При радиолокационной съёмке получают изображения местности в радиоволновом диапазоне электромагнитного излучения. Существуют специально приспособленные для глубинных геологических гидрологических работ многочастотные радиолакационные установки, использующие сантиметровые дециметровые волны. Радиолакационные съёмки особенно эффективны при исследовании влажности, мерзлотных явлений, болот, геологических и гидрологических образований.
Радиолокационная съёмка (РЛС) делится на съёмку бокового обзора и съёмку кругового обзора. Наибольшее расстояние до объектов, при котором они обнаруживаются, называется дальностью действия. При радиолокационной съёмке посылаются сигналы, излучающие энергию в определённых направлениях и принимают сигналы так же с определённых направлений. Чем уже диаграмма направленности, тем выше разрешающая способность РЛС.
Одним из современных методов сбора и обработки данных о местоположении объектов и рельефе местности, а также их качественных и количественных характеристиках, является комбинированный метод на основе лазерной локации и цифровой аэрофотосъёмки.
Наиболее интенсивно развиваются и широко распространены для картографических целей методы аэрофотосъёмки, космической съёмки и комбинированный метод лазерной локации и цифровой аэрофотосъёмки, последний применяется преимущественно для крупномасштабного картографирования и особенно эффективно для линейных объектов. Эти методы рассматриваются далее более детально.