
- •Часть 1
- •Предисловие
- •Введение
- •1. Аэрогеодезия, её содержание
- •2. Аэроизыскания
- •3. Аэросъёмка, её виды и методы
- •4. Исходные определения
- •5. Краткий исторический очерк развития
- •Глава 1. Основы аэро и космической фотосъемки
- •1. Общие понятия об аэрофотосъемке
- •2. Аэрофотоаппарат
- •3. Фотографический объектив и его характеристики
- •4. Светочувствительные слои и их основные показатели
- •5. Виды аэрофотосъемки. Носители съемочной аппаратуры
- •6. Основные технические требования
- •7. Специальное традиционное аэросъемочное оборудование
- •8. Аэрофотосъемочные работы
- •9. Современная аэрофотосъёмка
- •10. Космическая съёмка
- •- Приложение № 3. Ортотрансформирование данных со спутника OrbView-3 в программной среде pci Geomatica;
- •Глава 2. Геометрические основы фотограмметрии
- •1. Понятие о центральной проекции
- •2. Элементы центральной проекции
- •3. Перспектива точки и прямой предметной плоскости
- •4. Теорема Шаля. Эпюры
- •5. Перспектива отвесной прямой
- •6. Перспектива сетки квадратов
- •Контрольные вопросы
- •Глава 3. Теория одиночного снимка
- •Системы координат снимка.
- •Системы координат объекта.
- •3. Формулы связи координат соответственных точек
- •4. Формулы связи координат соответственных точек
- •Формулы связи координат соответственных точек
- •6. Масштаб изображения на аэроснимке
- •7. Линейные искажения, вызванные
- •8 . Линейные искажения, вызванные влиянием рельефа местности
- •9. Искажение изображения площади
- •10. Физические источники искажения изображения
- •Контрольные вопросы
- •Глава 4. Теория пары снимков
- •Формулы связи координат точек местности и их
- •Из рис.4.1 следует, что
- •Формулы связи координат точек местности и
- •Определение координат точек местности по
- •Условие, уравнения и элементы взаимного
- •5. Определение элементов взаимного ориентирования.
- •6. Построение фотограмметрической модели.
- •7. Внешнее ориентирование модели.
- •8. Определение элементов внешнего ориентирования
- •9.Точность определения координат точек объекта
- •Контрольные вопросы
- •Глава 5. Пространственная фототриангуляция
- •Назначение и классификация методов
- •2. Построение и уравнивание маршрутной и блочной
- •3. Построение и уравнивание маршрутной и
- •4. Построение и уравнивание маршрутной и блочной сети
- •5. Технология построения сетей фототриангуляции
- •6. Линеаризация условных уравнений
- •7. Решение линеаризованных уравнений
- •8. Требования к опорным точкам
- •9. Программы построения и уравнивания
- •Контрольные вопросы
- •Глава 6. Способы наблюдения и измерения стереомодели
- •1. Глаз – оптическая и физиологическая система
- •2. Монокулярное и бинокулярное зрение
- •3. Стереоскопическое зрение
- •4. Способы стереоскопических наблюдений
- •5. Способы измерения снимков и стереомодели
- •6. Стереокомпараторы
- •7. Точность измерений
- •Контрольные вопросы
- •Глава 7. Традиционное трансформирование снимков
- •1. Понятие о трансформировании
- •2. Понятие о традиционном фотомеханическом трансформировании
- •3. Фототрансформаторы
- •4. Трансформирование снимков на фототрансформаторе
- •5. Учет рельефа при фототрансформировании
- •6. Понятие о фотопланах и фотосхемах
- •7. Изготовление фотосхем
- •8. Изготовление фотопланов по традиционной технологии
- •Контрольные вопросы
- •Глава 8. Дешифрирование снимков
- •1. Понятие о дешифрировании
- •2. Дешифровочные признаки
- •3. Содержание дешифрирования
- •4. Спектральный образ как дешифровочный признак
- •5. Особенности дешифрирования космических
- •1. Особенности дешифрирования космических изображений.
- •Контрольные вопросы
- •Аэрокамера dss (Applanix)
- •Приложение № 3 Ортотрансформирование данных со спутника OrbView-3 в программной среде pci Geomatica Точное и rpc моделирование
- •Библиографический список
- •Оглавление
- •Глава 1. Основы аэро и космической фотосъёмки……..…23
- •Глава 2. Геометрические основы фотограмметрии………66
- •Глава 3. Теория одиночного снимка……………………………77
- •Глава 4. Теория пары снимков…………………………………...95
- •Глава 5. Пространственная фототриангуляция…………...111
- •Глава 6. Способы наблюдения и измерения
- •Глава 7. Традиционное трансформирование снимков....159
- •Учёт рельефа при фототрансформировании………………….166
- •Глава 8. Дешифрирование снимков…………………………….177
6. Основные технические требования
к топографической аэрофотосъемке
П
ри
топографической аэрофотосъемке должен
быть выполнен ряд требований, соблюдение
которых обеспечивает последующую
фотограмметрическую обработку
аэрофотоснимков. Контроль за
соблюдением этих требований
производится как в процессе аэрофотосъемки,
так и по ее завершению, при оценке
качества полученных материалов.
Высота фотографирования – это расстояние, измеряемое по отвесной линии от узловой точки объектива установленного на самолете аэрофотоаппарата до некоторой поверхности. В зависимости от выбора этой поверхности различают (рис. 1.9): абсолютную высоту фотографирования H0 над уровнем моря (плоскость A), относительную высоту фотографирования Ha над аэродромом (B), высоту фотографирования H над средней плоскостью съемочного участка (C), истинную высоту фотографирования Hi над какой-либо точкой местности (E).
Высота фотографирования над средней плоскостью съемочного участка определяется в период предполетной подготовки в зависимости от параметров аэрофотосъемки (f, m) и масштаба создаваемого плана (M):
(1.9)
где коэффициент увеличения снимка
.
(1.10)
При аэрофотосъемке равнинных районов реальная высота фотографирования может отличаться от расчетной не более чем на 3 % .
Перекрытия аэроснимков, выражаемые в процентах от размера аэронегатива, обеспечивают возможность фотограмметрической обработки аэроснимков, и требование их соответствия расчетным является одним из основных.
П
родольное
перекрытие
Px
(рис. 1.10, а)
должно быть в среднем 60% при минимальном
56%, что обеспечивает наличие
12-процентной зоны тройного
продольного перекрытия.
В некоторых случаях (например, при
съемке населенных пунктов с
многоэтажной застройкой) продольное
перекрытие
может устанавливаться равным 8090%
(±5%). Это позволяет обрабатывать
маршруты, в которых снимки взяты
через один (Px
=80 %)
или через два (Px
=90
%).
Зона продольного перекрытия определяет границы стереопары, в пределах которой выполняется фотограмметрическая обработка изображений. Зону тройного продольного перекрытия используют для связи смежных стереопар по общим точкам и передачи от одной из них к другой системе координат и масштаба фотограмметрических построений.
Поперечное перекрытие Py (рис. 1.10, б) должно быть не менее 20% при среднем 3035% и используется для размещения в нем опорных точек и точек связи смежных маршрутов. Иногда оно устанавливается равным 60%, что позволяет формировать и обрабатывать маршруты через один с целью повышения точности измерений и сокращения объема полевых работ.
Наличие продольного и поперечного перекрытий обусловливает целесообразность практического использования не всей площади аэроснимка, а только его центральной части. К тому же величины искажения положения точек под влиянием факторов физического и геометрического характера в центральной части снимка заметно меньше, чем по краям. Эта часть аэроснимка, ограниченная средними линиями продольного и поперечного перекрытий, называется рабочей площадью. В ее границах выполняется дешифрирование снимка и любые измерительные действия; из этих площадей создаются фотопланы, ортофотопланы и т. п.
Прямолинейность маршрутов характеризуется отношением стрелки прогиба l (максимального удаления центра какого-либо снимка маршрута от линии, соединяющей первый и последний снимки) к длине маршрута L. Прямолинейность подсчитывается в процентах, а ее величина не должна превышать двух – трех процентов.
Непараллельность стороны аэроснимка (базиса фотографирования) направлению полета затрудняет фотограмметрическую обработку снимков и не должна превышать 5–10 (в зависимости от фокусного расстояния съемочной камеры и высоты фотографирования).
Угол наклона аэроснимков оказывают влияние на фотограмметрические работы только при использовании приборов аналогового типа. Тем не менее, действующие нормативные документы, регламентирующие аэрофотосъемочные работы, устанавливают критерии ее оценки и по величине угла наклона, которая не должна превышать 10 при аэрофотосъемке с использованием средств стабилизации аэрофотоаппарата (см. разде 8) и 3 без них. Причем число снимков с максимальным углом наклона не должно превышать 10 % от их общего числа.
Ряд требований регламентирует метеорологические условия съемки, определяющие фотографическое качество снимков.
В частности, аэрофотосъемка должна выполняться при безоблачном небе, поскольку на снимках недопустимо изображение ни самих облаков, ни отбрасываемой ими тени. Отрицательное влияние на фотографическое качество оказывает также туман, дымка, избыточная влажность воздуха и пр. Все это меняет отражательную способность аэроландшафта, делает границы между объектами плохо различимыми и т. п. Нежелательно выполнять аэрофотосъемку ранней весной, поздней осенью, после распускания деревьями листвы, и совершенно недопустимо зимой, при наличии снежного покрова. Считается, что аэрофотосъемочный сезон начинается через две недели после весеннего снеготаяния и завершается с наступлением периода систематических осенних дождей.
Аэрофотосъемка выполняется в ранние утренние часы, при высоте Солнца над горизонтом не более 20–25, когда сквозь отбрасываемые объектами тени можно узнать закрываемые ими элементы местности.