
- •ANSYS Fluent Tutorial Guide
- •Table of Contents
- •Using This Manual
- •1. What’s In This Manual
- •2. How To Use This Manual
- •2.1. For the Beginner
- •2.2. For the Experienced User
- •3. Typographical Conventions Used In This Manual
- •Chapter 1: Fluid Flow in an Exhaust Manifold
- •1.1. Introduction
- •1.2. Prerequisites
- •1.3. Problem Description
- •1.4. Setup and Solution
- •1.4.1. Preparation
- •1.4.2. Meshing Workflow
- •1.4.3. General Settings
- •1.4.4. Solver Settings
- •1.4.5. Models
- •1.4.6. Materials
- •1.4.7. Cell Zone Conditions
- •1.4.8. Boundary Conditions
- •1.4.9. Solution
- •1.4.10. Postprocessing
- •1.5. Summary
- •Chapter 2: Fluid Flow and Heat Transfer in a Mixing Elbow
- •2.1. Introduction
- •2.2. Prerequisites
- •2.3. Problem Description
- •2.4. Setup and Solution
- •2.4.1. Preparation
- •2.4.2. Launching ANSYS Fluent
- •2.4.3. Reading the Mesh
- •2.4.4. Setting Up Domain
- •2.4.5. Setting Up Physics
- •2.4.6. Solving
- •2.4.7. Displaying the Preliminary Solution
- •2.4.8. Adapting the Mesh
- •2.5. Summary
- •Chapter 3: Postprocessing
- •3.1. Introduction
- •3.2. Prerequisites
- •3.3. Problem Description
- •3.4. Setup and Solution
- •3.4.1. Preparation
- •3.4.2. Reading the Mesh
- •3.4.3. Manipulating the Mesh in the Viewer
- •3.4.4. Adding Lights
- •3.4.5. Creating Isosurfaces
- •3.4.6. Generating Contours
- •3.4.7. Generating Velocity Vectors
- •3.4.8. Creating an Animation
- •3.4.9. Displaying Pathlines
- •3.4.10. Creating a Scene With Vectors and Contours
- •3.4.11. Advanced Overlay of Pathlines on a Scene
- •3.4.12. Creating Exploded Views
- •3.4.13. Animating the Display of Results in Successive Streamwise Planes
- •3.4.14. Generating XY Plots
- •3.4.15. Creating Annotation
- •3.4.16. Saving Picture Files
- •3.4.17. Generating Volume Integral Reports
- •3.5. Summary
- •Chapter 4: Modeling Periodic Flow and Heat Transfer
- •4.1. Introduction
- •4.2. Prerequisites
- •4.3. Problem Description
- •4.4. Setup and Solution
- •4.4.1. Preparation
- •4.4.2. Mesh
- •4.4.3. General Settings
- •4.4.4. Models
- •4.4.5. Materials
- •4.4.6. Cell Zone Conditions
- •4.4.7. Periodic Conditions
- •4.4.8. Boundary Conditions
- •4.4.9. Solution
- •4.4.10. Postprocessing
- •4.5. Summary
- •4.6. Further Improvements
- •Chapter 5: Modeling External Compressible Flow
- •5.1. Introduction
- •5.2. Prerequisites
- •5.3. Problem Description
- •5.4. Setup and Solution
- •5.4.1. Preparation
- •5.4.2. Mesh
- •5.4.3. Solver
- •5.4.4. Models
- •5.4.5. Materials
- •5.4.6. Boundary Conditions
- •5.4.7. Operating Conditions
- •5.4.8. Solution
- •5.4.9. Postprocessing
- •5.5. Summary
- •5.6. Further Improvements
- •Chapter 6: Modeling Transient Compressible Flow
- •6.1. Introduction
- •6.2. Prerequisites
- •6.3. Problem Description
- •6.4. Setup and Solution
- •6.4.1. Preparation
- •6.4.2. Reading and Checking the Mesh
- •6.4.3. Solver and Analysis Type
- •6.4.4. Models
- •6.4.5. Materials
- •6.4.6. Operating Conditions
- •6.4.7. Boundary Conditions
- •6.4.8. Solution: Steady Flow
- •6.4.9. Enabling Time Dependence and Setting Transient Conditions
- •6.4.10. Specifying Solution Parameters for Transient Flow and Solving
- •6.4.11. Saving and Postprocessing Time-Dependent Data Sets
- •6.5. Summary
- •6.6. Further Improvements
- •Chapter 7: Modeling Flow Through Porous Media
- •7.1. Introduction
- •7.2. Prerequisites
- •7.3. Problem Description
- •7.4. Setup and Solution
- •7.4.1. Preparation
- •7.4.2. Mesh
- •7.4.3. General Settings
- •7.4.4. Models
- •7.4.5. Materials
- •7.4.6. Cell Zone Conditions
- •7.4.7. Boundary Conditions
- •7.4.8. Solution
- •7.4.9. Postprocessing
- •7.5. Summary
- •7.6. Further Improvements
- •Chapter 8: Modeling Radiation and Natural Convection
- •8.1. Introduction
- •8.2. Prerequisites
- •8.3. Problem Description
- •8.4. Setup and Solution
- •8.4.1. Preparation
- •8.4.2. Reading and Checking the Mesh
- •8.4.3. Solver and Analysis Type
- •8.4.4. Models
- •8.4.5. Defining the Materials
- •8.4.6. Operating Conditions
- •8.4.7. Boundary Conditions
- •8.4.8. Obtaining the Solution
- •8.4.9. Postprocessing
- •8.4.10. Comparing the Contour Plots after Varying Radiating Surfaces
- •8.4.11. S2S Definition, Solution, and Postprocessing with Partial Enclosure
- •8.5. Summary
- •8.6. Further Improvements
- •Chapter 9: Using a Single Rotating Reference Frame
- •9.1. Introduction
- •9.2. Prerequisites
- •9.3. Problem Description
- •9.4. Setup and Solution
- •9.4.1. Preparation
- •9.4.2. Mesh
- •9.4.3. General Settings
- •9.4.4. Models
- •9.4.5. Materials
- •9.4.6. Cell Zone Conditions
- •9.4.7. Boundary Conditions
- •9.4.8. Solution Using the Standard k- ε Model
- •9.4.9. Postprocessing for the Standard k- ε Solution
- •9.4.10. Solution Using the RNG k- ε Model
- •9.4.11. Postprocessing for the RNG k- ε Solution
- •9.5. Summary
- •9.6. Further Improvements
- •9.7. References
- •Chapter 10: Using Multiple Reference Frames
- •10.1. Introduction
- •10.2. Prerequisites
- •10.3. Problem Description
- •10.4. Setup and Solution
- •10.4.1. Preparation
- •10.4.2. Mesh
- •10.4.3. Models
- •10.4.4. Materials
- •10.4.5. Cell Zone Conditions
- •10.4.6. Boundary Conditions
- •10.4.7. Solution
- •10.4.8. Postprocessing
- •10.5. Summary
- •10.6. Further Improvements
- •Chapter 11: Using Sliding Meshes
- •11.1. Introduction
- •11.2. Prerequisites
- •11.3. Problem Description
- •11.4. Setup and Solution
- •11.4.1. Preparation
- •11.4.2. Mesh
- •11.4.3. General Settings
- •11.4.4. Models
- •11.4.5. Materials
- •11.4.6. Cell Zone Conditions
- •11.4.7. Boundary Conditions
- •11.4.8. Operating Conditions
- •11.4.9. Mesh Interfaces
- •11.4.10. Solution
- •11.4.11. Postprocessing
- •11.5. Summary
- •11.6. Further Improvements
- •Chapter 12: Using Overset and Dynamic Meshes
- •12.1. Prerequisites
- •12.2. Problem Description
- •12.3. Preparation
- •12.4. Mesh
- •12.5. Overset Interface Creation
- •12.6. Steady-State Case Setup
- •12.6.1. General Settings
- •12.6.2. Models
- •12.6.3. Materials
- •12.6.4. Operating Conditions
- •12.6.5. Boundary Conditions
- •12.6.6. Reference Values
- •12.6.7. Solution
- •12.7. Unsteady Setup
- •12.7.1. General Settings
- •12.7.2. Compile the UDF
- •12.7.3. Dynamic Mesh Settings
- •12.7.4. Report Generation for Unsteady Case
- •12.7.5. Run Calculations for Unsteady Case
- •12.7.6. Overset Solution Checking
- •12.7.7. Postprocessing
- •12.7.8. Diagnosing an Overset Case
- •12.8. Summary
- •Chapter 13: Modeling Species Transport and Gaseous Combustion
- •13.1. Introduction
- •13.2. Prerequisites
- •13.3. Problem Description
- •13.4. Background
- •13.5. Setup and Solution
- •13.5.1. Preparation
- •13.5.2. Mesh
- •13.5.3. General Settings
- •13.5.4. Models
- •13.5.5. Materials
- •13.5.6. Boundary Conditions
- •13.5.7. Initial Reaction Solution
- •13.5.8. Postprocessing
- •13.5.9. NOx Prediction
- •13.6. Summary
- •13.7. Further Improvements
- •Chapter 14: Using the Eddy Dissipation and Steady Diffusion Flamelet Combustion Models
- •14.1. Introduction
- •14.2. Prerequisites
- •14.3. Problem Description
- •14.4. Setup and Solution
- •14.4.1. Preparation
- •14.4.2. Mesh
- •14.4.3. Solver Settings
- •14.4.4. Models
- •14.4.5. Boundary Conditions
- •14.4.6. Solution
- •14.4.7. Postprocessing for the Eddy-Dissipation Solution
- •14.5. Steady Diffusion Flamelet Model Setup and Solution
- •14.5.1. Models
- •14.5.2. Boundary Conditions
- •14.5.3. Solution
- •14.5.4. Postprocessing for the Steady Diffusion Flamelet Solution
- •14.6. Summary
- •Chapter 15: Modeling Surface Chemistry
- •15.1. Introduction
- •15.2. Prerequisites
- •15.3. Problem Description
- •15.4. Setup and Solution
- •15.4.1. Preparation
- •15.4.2. Reading and Checking the Mesh
- •15.4.3. Solver and Analysis Type
- •15.4.4. Specifying the Models
- •15.4.5. Defining Materials and Properties
- •15.4.6. Specifying Boundary Conditions
- •15.4.7. Setting the Operating Conditions
- •15.4.8. Simulating Non-Reacting Flow
- •15.4.9. Simulating Reacting Flow
- •15.4.10. Postprocessing the Solution Results
- •15.5. Summary
- •15.6. Further Improvements
- •Chapter 16: Modeling Evaporating Liquid Spray
- •16.1. Introduction
- •16.2. Prerequisites
- •16.3. Problem Description
- •16.4. Setup and Solution
- •16.4.1. Preparation
- •16.4.2. Mesh
- •16.4.3. Solver
- •16.4.4. Models
- •16.4.5. Materials
- •16.4.6. Boundary Conditions
- •16.4.7. Initial Solution Without Droplets
- •16.4.8. Creating a Spray Injection
- •16.4.9. Solution
- •16.4.10. Postprocessing
- •16.5. Summary
- •16.6. Further Improvements
- •Chapter 17: Using the VOF Model
- •17.1. Introduction
- •17.2. Prerequisites
- •17.3. Problem Description
- •17.4. Setup and Solution
- •17.4.1. Preparation
- •17.4.2. Reading and Manipulating the Mesh
- •17.4.3. General Settings
- •17.4.4. Models
- •17.4.5. Materials
- •17.4.6. Phases
- •17.4.7. Operating Conditions
- •17.4.8. User-Defined Function (UDF)
- •17.4.9. Boundary Conditions
- •17.4.10. Solution
- •17.4.11. Postprocessing
- •17.5. Summary
- •17.6. Further Improvements
- •Chapter 18: Modeling Cavitation
- •18.1. Introduction
- •18.2. Prerequisites
- •18.3. Problem Description
- •18.4. Setup and Solution
- •18.4.1. Preparation
- •18.4.2. Reading and Checking the Mesh
- •18.4.3. Solver Settings
- •18.4.4. Models
- •18.4.5. Materials
- •18.4.6. Phases
- •18.4.7. Boundary Conditions
- •18.4.8. Operating Conditions
- •18.4.9. Solution
- •18.4.10. Postprocessing
- •18.5. Summary
- •18.6. Further Improvements
- •Chapter 19: Using the Multiphase Models
- •19.1. Introduction
- •19.2. Prerequisites
- •19.3. Problem Description
- •19.4. Setup and Solution
- •19.4.1. Preparation
- •19.4.2. Mesh
- •19.4.3. Solver Settings
- •19.4.4. Models
- •19.4.5. Materials
- •19.4.6. Phases
- •19.4.7. Cell Zone Conditions
- •19.4.8. Boundary Conditions
- •19.4.9. Solution
- •19.4.10. Postprocessing
- •19.5. Summary
- •Chapter 20: Modeling Solidification
- •20.1. Introduction
- •20.2. Prerequisites
- •20.3. Problem Description
- •20.4. Setup and Solution
- •20.4.1. Preparation
- •20.4.2. Reading and Checking the Mesh
- •20.4.3. Specifying Solver and Analysis Type
- •20.4.4. Specifying the Models
- •20.4.5. Defining Materials
- •20.4.6. Setting the Cell Zone Conditions
- •20.4.7. Setting the Boundary Conditions
- •20.4.8. Solution: Steady Conduction
- •20.5. Summary
- •20.6. Further Improvements
- •Chapter 21: Using the Eulerian Granular Multiphase Model with Heat Transfer
- •21.1. Introduction
- •21.2. Prerequisites
- •21.3. Problem Description
- •21.4. Setup and Solution
- •21.4.1. Preparation
- •21.4.2. Mesh
- •21.4.3. Solver Settings
- •21.4.4. Models
- •21.4.6. Materials
- •21.4.7. Phases
- •21.4.8. Boundary Conditions
- •21.4.9. Solution
- •21.4.10. Postprocessing
- •21.5. Summary
- •21.6. Further Improvements
- •21.7. References
- •22.1. Introduction
- •22.2. Prerequisites
- •22.3. Problem Description
- •22.4. Setup and Solution
- •22.4.1. Preparation
- •22.4.2. Structural Model
- •22.4.3. Materials
- •22.4.4. Cell Zone Conditions
- •22.4.5. Boundary Conditions
- •22.4.6. Solution
- •22.4.7. Postprocessing
- •22.5. Summary
- •23.1. Introduction
- •23.2. Prerequisites
- •23.3. Problem Description
- •23.4. Setup and Solution
- •23.4.1. Preparation
- •23.4.2. Solver and Analysis Type
- •23.4.3. Structural Model
- •23.4.4. Materials
- •23.4.5. Cell Zone Conditions
- •23.4.6. Boundary Conditions
- •23.4.7. Dynamic Mesh Zones
- •23.4.8. Solution Animations
- •23.4.9. Solution
- •23.4.10. Postprocessing
- •23.5. Summary
- •Chapter 24: Using the Adjoint Solver – 2D Laminar Flow Past a Cylinder
- •24.1. Introduction
- •24.2. Prerequisites
- •24.3. Problem Description
- •24.4. Setup and Solution
- •24.4.1. Step 1: Preparation
- •24.4.2. Step 2: Define Observables
- •24.4.3. Step 3: Compute the Drag Sensitivity
- •24.4.4. Step 4: Postprocess and Export Drag Sensitivity
- •24.4.4.1. Boundary Condition Sensitivity
- •24.4.4.2. Momentum Source Sensitivity
- •24.4.4.3. Shape Sensitivity
- •24.4.4.4. Exporting Drag Sensitivity Data
- •24.4.5. Step 5: Compute Lift Sensitivity
- •24.4.6. Step 6: Modify the Shape
- •24.5. Summary
- •25.1. Introduction
- •25.2. Prerequisites
- •25.3. Problem Description
- •25.4. Setup and Solution
- •25.4.1. Preparation
- •25.4.2. Reading and Scaling the Mesh
- •25.4.3. Loading the MSMD battery Add-on
- •25.4.4. NTGK Battery Model Setup
- •25.4.4.1. Specifying Solver and Models
- •25.4.4.2. Defining New Materials for Cell and Tabs
- •25.4.4.3. Defining Cell Zone Conditions
- •25.4.4.4. Defining Boundary Conditions
- •25.4.4.5. Specifying Solution Settings
- •25.4.4.6. Obtaining Solution
- •25.4.5. Postprocessing
- •25.4.6. Simulating the Battery Pulse Discharge Using the ECM Model
- •25.4.7. Using the Reduced Order Method (ROM)
- •25.4.8. External and Internal Short-Circuit Treatment
- •25.4.8.1. Setting up and Solving a Short-Circuit Problem
- •25.4.8.2. Postprocessing
- •25.5. Summary
- •25.6. Appendix
- •25.7. References
- •26.1. Introduction
- •26.2. Prerequisites
- •26.3. Problem Description
- •26.4. Setup and Solution
- •26.4.1. Preparation
- •26.4.2. Reading and Scaling the Mesh
- •26.4.3. Loading the MSMD battery Add-on
- •26.4.4. Battery Model Setup
- •26.4.4.1. Specifying Solver and Models
- •26.4.4.2. Defining New Materials
- •26.4.4.3. Defining Cell Zone Conditions
- •26.4.4.4. Defining Boundary Conditions
- •26.4.4.5. Specifying Solution Settings
- •26.4.4.6. Obtaining Solution
- •26.4.5. Postprocessing
- •26.5. Summary
- •Chapter 27: In-Flight Icing Tutorial Using Fluent Icing
- •27.1. Fluent Airflow on the NACA0012 Airfoil
- •27.2. Flow Solution on the Rough NACA0012 Airfoil
- •27.3. Droplet Impingement on the NACA0012
- •27.3.1. Monodispersed Calculation
- •27.3.2. Langmuir-D Distribution
- •27.3.3. Post-Processing Using Quick-View
- •27.4. Fluent Icing Ice Accretion on the NACA0012
- •27.5. Postprocessing an Ice Accretion Solution Using CFD-Post Macros
- •27.6. Multi-Shot Ice Accretion with Automatic Mesh Displacement
- •27.7. Multi-Shot Ice Accretion with Automatic Mesh Displacement – Postprocessing Using CFD-Post

vk.com/club152685050 | vk.com/id446425943 |
Setup and Solution |
d.Enable Full Multicomponent Diffusion and Thermal Diffusion.
The Full Multicomponent Diffusion activates Stefan-Maxwell’s equations and computes the diffusive fluxes of all species in the mixture to all concentration gradients. The Thermal Diffusion effects cause heavy molecules to diffuse less rapidly, and light molecules to diffuse more rapidly, toward heated surfaces.
e.Click OK to close the Species Model dialog box.
f.Click OK to close the Information dialog box.
15.4.5. Defining Materials and Properties
In the following steps you will copy the gas-phase species (AsH3 , Ga(CH3)3 , CH3 , and H2 ) from the ANSYS Fluent database, specify the mixture materials, setup the reactions, and modify the material properties. You will also create the site species (Ga_s and As_s) and the solid species (Ga and As).
1.Copy arsenic-trihydride, hydrogen, methyl-radical, and trimethyl-gallium from the ANSYS Fluent material database to the list of fluid materials and modify their properties.
Setup → Materials → Fluid → air
Edit...
a.Click Fluent Database... in the Create/Edit Materials dialog box to open the Fluent Database Materials dialog box.
b.In the Fluent Database Materials dialog box, select fluid from the Material Type drop-down list.
c.From the Fluent Fluid Materials selection list, select arsenic-trihydride (ash3), hydrogen (h2), methylradical (ch3), and trimethyl-gallium (game3) by clicking each species once.
Scroll down the Fluent Fluid Materials list to locate each species.
Release 2019 R1 - © ANSYS,Inc.All rights reserved.- Contains proprietary and confidential information |
|
of ANSYS, Inc. and its subsidiaries and affiliates. |
509 |

vk.com/club152685050Modeling Surface Chemistry| vk.com/id446425943
d.Click Copy to copy the selected species to your model.
e.Click Close to close the Fluent Database Materials dialog box.
2.Create the site species (Ga_s and As_s) and the solid species (Ga and As).
a.In the Create/Edit Materials dialog box, select air from the Fluent Fluid Materials drop-down list.
b.Enter ga_s for the Name text entry field.
c.Enter ga_s for the Chemical Formula text entry field.
d.Click Change/Create to create the new material.
e.Click No in the Question dialog box when asked if you want to overwrite air.
The new material ga_s is added to your model and listed under Fluid in the Materials task page and under the Setup/Materials/Fluid tree branch.
|
Release 2019 R1 - © ANSYS,Inc.All rights reserved.- Contains proprietary and confidential information |
510 |
of ANSYS, Inc. and its subsidiaries and affiliates. |

vk.com/club152685050 | vk.com/id446425943 |
Setup and Solution |
f.Create as_s,ga, as following the same procedure as for ga_s and close the Create/Edit Materials dialog box.
Extra
To enter complex formulae such as Ga(CH3)3 in the text entry box, use ‘<’ and ‘>’ instead of ‘(’ and ‘ )’, respectively.
3. Set the mixture species.
Setup → Materials → Mixture → mixture-template
Edit...
a.Enter gaas_deposition for Name.
b.Click Change/Create.
c.Click Yes in the Question dialog box to overwrite the mixture-template.
d.Set the Selected Species.
i.In Properties group box, click the Edit... button to the right of the names drop-down list for Mixture Species to open the Species dialog box.
Release 2019 R1 - © ANSYS,Inc.All rights reserved.- Contains proprietary and confidential information |
|
of ANSYS, Inc. and its subsidiaries and affiliates. |
511 |

vk.com/club152685050Modeling Surface Chemistry| vk.com/id446425943
ii.Set the Selected Species from the Available Materials selection list as shown in Table 15.1: Selected Species (p. 512) .
Table 15.1: Selected Species
Selected Species
ash3
game3
ch3 h2
Important
•Add arsenic-trihydride (ash3), trimethyl-gallium (game3), methyl-radical (ch3), and hydrogen (h2) to the Selected Species list before removing h2o, o2, and n2.
•Ensure that h2 is at the bottom in the Selected Species selection list as shown in Table 15.1: Selected Species (p. 512). ANSYS Fluent will interpret the last species in the list as the bulk species.
Note
To add/remove the species:
•To add a particular species to the list, select the required species from the Available Materials selection list and click Add in the corresponding species selection list (Selected Species, Selected Site Species, or Selected Solid Species). The species will be added to the end of the relevant list and removed from the Available Materials list.
•To remove an unwanted species from the selection list, select the species from the selection list (Selected Species, Selected Site Species, or Selected Solid Species) and click Remove in the corresponding selection list. The species will be removed from the list and added to the Available Materials list.
iii.Click OK to close the Species dialog box.
iv.Click Change/Create and close the Creat/Edit Materials dialog box.
4.Enable chemical species transport reaction.
Physics → Models → Species...
Although you enable reactions, you still run a non-reacting flow to produce an initial solution. You will run a reacting flow in Simulating Reacting Flow (p. 530).
|
Release 2019 R1 - © ANSYS,Inc.All rights reserved.- Contains proprietary and confidential information |
512 |
of ANSYS, Inc. and its subsidiaries and affiliates. |

vk.com/club152685050 | vk.com/id446425943 |
Setup and Solution |
a.Enable Volumetric and Wall Surface in the Reactions group box.
b.Retain the selection of gaas_deposition from the Mixture Material drop-down list.
c.Disable Heat of Surface Reactions and enable Mass Deposition Source.
d.Click OK to close the Species Model dialog box.
5.Set the site and solid species and the mixture reactions in a similar manner to the mixture species.
Setup → Materials → Mixture → gaas_deposition
Edit...
Release 2019 R1 - © ANSYS,Inc.All rights reserved.- Contains proprietary and confidential information |
|
of ANSYS, Inc. and its subsidiaries and affiliates. |
513 |

vk.com/club152685050Modeling Surface Chemistry| vk.com/id446425943
a.Click the Edit... button to the right of the names drop-down list for Mixture Species in the Properties group box.
Specify the Selected Site Species and the Selected Solid Species as shown in Table 15.2: Selected Site and Solid Species (p. 514).
Table 15.2: Selected Site and Solid Species
Selected Site Species |
Selected Solid Species |
ga_s |
ga |
as_s |
as |
Once you set the site and solid species, the Species dialog box should look like this:
b.Click OK to close the Species dialog box.
c.Click the Edit... button to the right of the Reaction drop-down list to open the Reactions dialog box.
|
Release 2019 R1 - © ANSYS,Inc.All rights reserved.- Contains proprietary and confidential information |
514 |
of ANSYS, Inc. and its subsidiaries and affiliates. |

vk.com/club152685050 | vk.com/id446425943 |
Setup and Solution |
d.Increase the Total Number of Reactions to 2, and define the following reactions using the parameters in Table 15.3: Reaction Parameters (p. 515) :
(15.3)
(15.4)
Table 15.3: Reaction Parameters |
|
|
|
Parameter |
For Equation 15.3 (p. 515) |
|
For Equation 15.4 (p. 515) |
Reaction ID |
1 |
2 |
a |
|
|
|
|
Reaction Name |
gallium-dep |
arsenic-dep |
|
Reaction Type |
Wall Surface |
Wall Surface |
|
Number of Reactants |
2 |
2 |
|
Species |
ash3, ga_s |
game3, as_s |
|
Stoich. Coefficient |
ash3= 1, ga_s= 1 |
game3= 1, as_s= 1 |
Release 2019 R1 - © ANSYS,Inc.All rights reserved.- Contains proprietary and confidential information |
|
of ANSYS, Inc. and its subsidiaries and affiliates. |
515 |

vk.com/club152685050 | vk.com/id446425943 |
|
|
Modeling Surface Chemistry |
|
|
Parameter |
For Equation 15.3 (p. 515) |
For Equation 15.4 (p. 515) |
Rate Exponent |
ash3= 1, ga_s= 1 |
game3= 1, as_s= 1 |
Arrhenius Rate |
PEF= 1e+06, AE= 0, TE= 0.5 |
b PEF= 1e+12, AE= 0, TE= 0.5 |
|
|
|
Number of Products |
3 |
3 |
Species |
ga, as_s, h2 |
as, ga_s, ch3 |
Stoich. Coefficient |
ga= 1, as_s= 1, h2= 1.5 |
as= 1, ga_s= 1, ch3= 3 |
Rate Exponent |
as_s= 0, h2= 0 |
ga_s= 0, ch3= 0 |
aSet the ID to 2 in order to set the parameters for the second reaction.
bHere, PEF = Pre-Exponential Factor, AE = Activation Energy, and TE = Temperature Exponent.
e.Click OK to save the data and close the Reactions dialog box.
f.Set the reaction mechanisms for the mixture.
i.Click the Edit... button to the right of the Mechanism drop-down list to open the Reaction Mechanisms dialog box.
ii.Retain Number of Mechanisms as 1.
iii.Enter gaas-ald for Name.
iv.Select Wall Surface in the Reaction Type group box.
v.Select gallium-dep and arsenic-dep from the Reactions selection list.
vi.Set Number of Sites to 1.
|
Release 2019 R1 - © ANSYS,Inc.All rights reserved.- Contains proprietary and confidential information |
516 |
of ANSYS, Inc. and its subsidiaries and affiliates. |

vk.com/club152685050 | vk.com/id446425943 |
Setup and Solution |
vii.Enter 1e-08 kgmol/m2 for Site Density for site-1.
viii.Click the Define... button to the right of site-1 to open the Site Parameters dialog box.
A.Set Total Number of Site Species to 2.
B.Select ga_s as the first site species and enter 0.7 for Initial Site Coverage.
C.Select as_s as the second site species and enter 0.3 for Initial Site Coverage.
D.Click Apply and close the Site Parameters dialog box.
ix.Click OK to close the Reaction Mechanisms dialog box.
g.Retain the default selection of incompressible-ideal-gas from the Density drop-down list.
h.Retain the default selection of mixing-law from the Cp (Specific Heat) drop-down list.
i.Select mass-weighted-mixing-law from the Thermal Conductivity drop-down list.
j.Select mass-weighted-mixing-law from the Viscosity drop-down list.
k.Retain the default selection of kinetic-theory from the Mass Diffusivity drop-down list.
l.Retain the default selection of kinetic-theory from the Thermal Diffusion Coefficient drop-down list.
m.Click Change/Create and close the Create/Edit Materials dialog box.
6.Specify the material properties for arsenic-trihydride, hydrogen, methyl-radical, trimethyl-gallium, site species (Ga_s and As_s), and solid species (Ga and As).
Setup → Materials → Mixture → gaas_deposition → arsenic-trihydride
Edit...
Release 2019 R1 - © ANSYS,Inc.All rights reserved.- Contains proprietary and confidential information |
|
of ANSYS, Inc. and its subsidiaries and affiliates. |
517 |

vk.com/club152685050Modeling Surface Chemistry| vk.com/id446425943
a.In the Properties group box, modify the arsenic-trihydride properties as shown in Table 15.4: Properties of Species (p. 518).
Important
Ensure Mixture is set to gaas_deposition
Tip
Scroll down in the Properties group box to see all the parameters.
Table 15.4: Properties of Species |
|
|
|
|
Parameter |
AsH_3 |
Ga(CH_3)_3 |
CH_3 |
H_2 |
Name |
arsenic-tri- |
trimethyl- |
methyl-radic- hydrogen |
|
|
hydride |
gallium |
al |
|
Chemical Formula |
ash3 |
game3 |
ch3 |
h2 |
Cp (Specific Heat) |
piecewise- |
piecewise-poly- |
piecewise-poly- piecewise-poly- |
|
|
polynomial |
nomial |
nomial |
nomial |
Thermal Conductiv- |
kinetic-theory |
kinetic-theory |
kinetic-theory |
kinetic-theory |
ity |
|
|
|
|
Viscosity |
kinetic-theory |
kinetic-theory |
kinetic-theory |
kinetic-theory |
Molecular Weight |
77.95 |
114.83 |
15 |
2.02 |
Standard State En- |
0 |
0 |
2.044e+07 |
0 |
thalpy |
|
|
|
|
|
Release 2019 R1 - © ANSYS,Inc.All rights reserved.- Contains proprietary and confidential information |
518 |
of ANSYS, Inc. and its subsidiaries and affiliates. |

vk.com/club152685050 | vk.com/id446425943 |
|
Setup and Solution |
||
Parameter |
AsH_3 |
Ga(CH_3)_3 |
CH_3 |
H_2 |
Standard State En- |
130579.1 |
130579.1 |
257367.6 |
130579.1 |
tropy |
|
|
|
|
Reference Temper- |
298.15 |
298.15 |
298.15 |
298.15 |
ature |
|
|
|
|
L-J Characteristic |
4.145 |
5.68 |
3.758 |
2.827 |
Length |
|
|
|
|
L-J Energy Paramet- |
259.8 |
398 |
148.6 |
59.7 |
er |
|
|
|
|
b. When finished, click Change/Create to update your local copy of the species material.
Note
When you modify the properties of the material local copy, the original copy in Fluent material database stays intact.
c.In a similar way, modify the properties of trimethyl-gallium (game3), methyl-radical (ch3), and hydrogen (h2).
Note
Make sure to click Change/Create each time you modify the properties for the material to apply the changes to the local copy.
d.Select ga_s from the Fluent Fluid Materials drop-down list.
e.Enter the parameter values for the ga_s species as shown in Table 15.5: Properties of Species (p. 519).
Table 15.5: Properties of Species |
|
|
|
|
Parameter |
Ga_s |
As_s |
Ga |
As |
Name |
ga_s |
as_s |
ga |
as |
Chemical Formula |
ga_s |
as_s |
ga |
as |
Cp (Specific Heat) |
520.64 |
520.64 |
1006.43 |
1006.43 |
Thermal Conduct- |
0.0158 |
0.0158 |
kinetic-theory |
kinetic-theory |
ivity |
|
|
|
|
Viscosity |
2.125e-05 |
2.125e-05 |
kinetic-theory |
kinetic-theory |
Molecular Weight |
69.72 |
74.92 |
69.72 |
74.92 |
Standard State |
-3117.71 |
-3117.71 |
0 |
0 |
Enthalpy |
|
|
|
|
Standard State |
154719.3 |
154719.3 |
0 |
0 |
Entropy |
|
|
|
|
Reference Temper- |
298.15 |
298.15 |
298.15 |
298.15 |
ature |
|
|
|
|
Release 2019 R1 - © ANSYS,Inc.All rights reserved.- Contains proprietary and confidential information |
|
of ANSYS, Inc. and its subsidiaries and affiliates. |
519 |