
- •Понятия эвм и вс. Понятие архитектуры вс
- •Архитектура как набор взаимодействующих компонентов. Архитектура как интерфейс между уровнями физической системы
- •Теория эволюции компьютеров. Закон Мура. Дуализм в развитии техники Теория эволюции компьютеров
- •Дуализм в развитии техники
- •Механическая эра вычислений
- •Счетно-аналитические машины
- •Общее описание и анализ вычислительной машины eniac
- •Общее описание и анализ вычислительной машины edvac Анализ eniac
- •Принципы фон-Неймана. Поколения эвм
- •Многоуровневая компьютерная организация. Уровни для прикладных и системных программистов
- •Многоуровневая компьютерная организация
- •Архитектура системы команд
- •Cisc и risc архитектуры процессоров Архитектура системы команд
- •Cisc и risc архитектуры процессоров
- •Организация risc мп dec Alpha 21x64 Организация risc мп dec Alpha 21x64
- •Развитие архитектур современных мп. Расширение архитектуры x86 Развитие архитектур современных мп
- •Архитектура vliw
- •Архитектура epic
- •Технология ia-64
- •Предпосылки развития вс. Закон Гроша для вс
- •Модель вычислителя
- •Возможности совершенствования эвм
- •Модель коллектива вычислителей
- •Структура коллектива вычислителей
- •Алгоритм работы коллектива вычислителей
- •Принципы технической реализации модели коллектива вычислителей
- •Архитектурные свойства вс Архитектурные свойства вычислительных систем
- •Системы (языки) параллельного программирования Системы (языки) параллельного программирования
- •Параллельные модели программирования. Модель передачи сообщений. Реализация на основе mpi.
- •Параллельные модели программирования. Модель общей памяти. Реализация на основе OpenMp Системы (языки) параллельного программирования
- •1. По назначению (универсальные и специализированные)
- •2. По типу (многомашинные и многопроцессорные) (ниже)
- •3. По типу эвм или процессоров (однородные и неоднородные)
- •4. По степени территориальной разобщенности (сосредоточенные и распределенные)
- •6. По режиму работы вс (оперативные и неоперативные)
- •Многомашинные вс. Режимы работы. Отличия от многопроцессорных вс
- •Классификация Флинна архитектур
- •Основные классы вычислительных систем
- •Параллельные алгоритмы. Параллельная программа. Локальное и глобальное распараллеливание
- •Модель вычислений в виде графа "операции-операнды"
- •Показатели эффективности параллельных вычислений: ускорение, эффективность, масштабируемость
- •Оценка максимально достижимого параллелизма. Закон Амдала. Парадокс параллелизма
- •Многомашинные вс. Режимы работы. Отличия от многопроцессорных вс
- •Уровни комплексирования в вычислительных системах Многомашинные вс. Режимы работы. Отличия от многопроцессорных вс
- •Уровни комплексирования в вс
- •Алгоритмы маршрутизации. Методы передачи данных. Латентность и пропускная способность сети
- •Передача данных между двумя процессорами и широковещательная передача. Реализация точечных методов передачи и широковещательной рассылки в mpi
- •Сложные задачи. Масштабируемость параллельных вычислений. Функция изоэффективности
- •Системы с общей и распределенной памятью. Многоуровневая организация общей памяти
- •Память с чередованием адресов
- •Симметричные (smp) многопроцессорные вс. Архитектура типа uma, coma, numa
- •Мультипроцессор Sun Enterprise 10000
- •Мультипроцессоры numa
- •Векторные системы. Понятие вектора и размещение данных в памяти. Векторный процессор. Pvp-система
- •Структура векторного процессора Структуры типа "память-память" и "регистр-регистр". Ускорение вычислений в векторных системах
- •Вычислительная система star-100
- •Вычислительная система cray c-90
- •Матричные вычислительные системы. Обобщенная модель матричной вс. Интерфейсная вм. Контроллер массива процессоров
- •Вычислительная система illiac IV
- •Ассоциативная память. Ассоциативные вс Ассоциативная память
- •Систолические структуры Систолические структуры
- •Кластеры. Виды кластеров
- •Топологии кластеров. Кластер Beowulf
- •Топологии кластеров
- •Кластер Beowulf
- •Архитектура с массовой параллельной обработкой Системы с массовым параллелизмом (mpp-системы)
Теория эволюции компьютеров. Закон Мура. Дуализм в развитии техники Теория эволюции компьютеров
Современное состояние вычислительной техники (ВТ) являет собой результат многолетней эволюции. В последнее время вопросы развития ВТ стали предметом особо пристального внимания ученых, свидетельством чего служит активно развивающаяся новая область знаний, получившая название «Теория эволюции компьютеров» (Computer evolution theory).
Создатели теории обратили внимание на сходство закономерностей эволюции вычислительной техники и эволюции в биологии. В основу новой науки положены следующие постулаты:
самозарождение «живых» вычислительных систем из «неживых» элементов (в биологии это явление известно как абиогенез);
поступательное продвижение по древу эволюции — от протопроцессорных (однопроцессорных) вычислительных машин к полипроцессорным (многопроцессорным) вычислительным системам;
прогресс в технологии вычислительных систем как следствие полезных мутаций и вариаций;
отмирание устаревших технологий в результате естественного отбора;
закон Мура как подтверждение эволюции вычислительных систем.
По мнению специалистов в области теории эволюции компьютеров, изучение закономерностей развития вычислительных машин и систем может, как и в биологии, привести к ощутимым практическим результатам.
Дуализм в развитии техники
Развитие человека и общества неразрывно связано с прогрессом в технике вообще и технике для вычислений, в частности. Имела и имеет место тенденция к постоянному усилению физических и вычислительных возможностей человека путем создания орудий, машин и систем машин. Установился своеобразный дуализм в развитии техники, который иллюстрируется двумя эволюционными «рядами»:
Физический ряд
Вычислительный ряд
В истории вычислительной техники (ВТ) ясно выделяются два периода:
простейшие механические и электромеханические приборы и машины для вычислений; (можно назвать «предысторией» или «древней историей»)
ЭВМ и параллельные вычислительные системы («новая и новейшая история»).
Механическая эра вычислений. Арифмометры. Счетно-аналитические машины. Вычислительная машина Ч.Беббиджа. Вычислительные машины Конрада Цузе
Механическая эра вычислений
Арифмометры
Арифмометр (от греч. arithmos – число и metrov – мера, измеритель ) – настольная механическая счетная машина с ручным управлением для выполнения четырех арифметических действий.
Хронология:
1492 год. В одном из своих дневников Леонардо да Винчи приводит рисунок тринадцатиразрядного десятичного суммирующего устройства на основе зубчатых колес.
1642 год. Блез Паскаль (Blaise Pascal, 1623–1663) представляет «Паскалин» — первое реально осуществленное и получившее известность механическое цифровое вычислительное устройство. Прототип устройства суммировал и вычитал пятиразрядные десятичные числа.
1673 год. Готфрид Вильгельм Лейбниц (Gottfried Wilhelm Leibniz, 1646–1716) создает «пошаговый вычислитель» — десятичное устройство для выполнения всех четырех арифметических операций над 12-разрядными десятичными числами.
1786 год. Немецкий военный инженер Иоганн Мюллер (Johann Mueller, 1746–1830) выдвигает идею «разностной машины» — специализированного калькулятора для табулирования логарифмов, вычисляемых разностным методом.
Широкое распространение имел арифмометр, сконструированный в 1874 г. петербургским механиком В.Т. Однером. Производство таких арифмометров было налажено и в России (1890 г.), и за рубежом. Арифмометр В.Т. Однера послужил прототипом последующих моделей (в частности, для модели «Феликс», выпускавшейся в СССР до 60-х годов прошлого столетия).
Следует подчеркнуть, что любой арифмометр обеспечивал не автоматизацию, а лишь механизацию вычислений (благодаря таким средствам как счетчик и регистры).