Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТМПСК лекции.doc
Скачиваний:
13
Добавлен:
31.08.2019
Размер:
632.32 Кб
Скачать

1.3 Типовая структурная схема срв

ЦЕЛЬ – детализация принципиальной схемы СРВ.

Типовая структурная схема СРВ. В предыдущем разделе указывалось, что в лекционном материале будут рассматриваться СРВ, УУ которых реализовано компьютерами. На рис.1.3.1 дана типовая, структурная схема СРВ, являющаяся детализацией (т.е. отвечающей на вопрос: как реализуется?) принципиальной схемы СРВ на рис.1.2.1.

Условные обозначения:

Д – датчики информации ПО – программное обеспечение

П – потребители информации X – сигналы от датчиков

Ап – аппаратные средства Y - сигналы к потребителям

.

Рис. 1.3.1 Типовая структурная схема СРВ

При всем разнообразии типов построения Объектов Управления (ОУ) в любом их них

присутствуют датчики (Д) и потребители (П) информации. Расположение их на рисунке внутри ОУ показывает только факт принадлежности этих компонент к ОУ, хотя территориально они могут быть разнесены, но обязательно должны быть связаны с ОУ. Среда, как источник возмущения, воздействует на Д, которые преобразуют эти воздействия в сигналы X, поступающие в компьютер. Результатом их обработки в компьютере являются сигналы Y, которые воздействуют на П. В свою очередь П преобразуют их в виде реакций на возмущения.

Датчики являются источником динамической информации о среде. Если управляется один объект (например, технологический процесс), то множество Д несет информацию о разных состояниях этого процесса, если управляется множество объектов, то множество Д состоит из подмножеств, каждое из которых несет информацию об одном из управляемых объектов. Необходимо отметить важную особенность Д для СРВ: кроме информации от них СРВ не получает никакой информации о среде. Образно выражаясь, только через датчики УУ СРВ «видит», «слышит» и «чувствует» те компоненты среды, которые воздействуют на ОУ.

Характерными особенностями ДАТЧИКОВ являются:

  1. Моделирование свойств среды. В датчиках, заданные для них свойства среды, преобразуются (моделируются) в процессы электрической природы, которые затем обрабатываются в компьютере. /Например, цифры номера при наборе их на телефоне/. Из данной особенности следуют особенности 2 и 3.

  2. Ограниченность типов моделируемых свойств. Из всех свойств среды Д выбирают только те, на которые они спроектированы. Остальные свойства среды датчики «не замечают».

  3. Приближённость моделирования. Свойства, на которые «настроены» датчики, определяются всегда с какой – то точностью (приближенно), удовлетворяющей разработанной СРВ./ Например, определение температуры среды в каком – нибудь технологическом процессе/.

Потребители информации являются потребителями воздействий, вырабатываемых компьютером. Их особенности те же, что и у датчиков.

Если исходить из определения, что «данные – информация, подготовленная для определенных целей», и учитывая, что в СРВ такие данные идут непрерывно (в реальном времени), удобно называть их «потоками данных от Д или к П».

Компьютеры используются в качестве УУ. Компьютеры имеют Аппаратные (Ап) средства и Программное Обеспечение (ПО). Назначение компьютера – обрабатывать потоки данных, поступающих от Д, т.е. программно реализовывать процессы управления на основе этих данных. В результате обработки из компьютера выдаются потоки данных к П. Темп обработки данных, в соответствии с системной характеристикой СРВ, должен быть не ниже скорости изменения среды. ПО разрабатывается на основе алгоритмов процессов преобразования данных от Д к П.

Анализ типовой структурной схемы. Несмотря на довольно простую схему рис.1.3.1, ее инженерный анализ представляет значительный интерес, ибо результаты анализа применимы для любой конкретной схемы, базирующейся на данном рисунке. С практической точки зрения наибольший интерес представляют возможные ошибки при проектировании.

Ошибки могут быть системного, программного или аппаратного характера. В свою очередь каждый такой тип ошибок можно детализировать по уровням. Например, аппаратные ошибки детализируются на уровне плат – в платах, в соединениях между платами; на уровне устройств – в устройствах, в соединениях между устройствами и т. д. Чем выше уровень ошибок, тем более «дороже» их нахождение и исправление. Следовательно, при разработках СРВ вопросы контроля и диагностики (т. е. поиска ошибок) должны обязательно учитываться.

Самыми «дорогими» в разработках СРВ являются ошибки системного уровня, т.е. ошибки самой концепции системы. Можно идеально реализовать нижестоящие уровни, но система не будет работать, если была ошибка на системном уровне. Рис.1.3.1 является типовой, структурной схемой любой СРВ, т. е. конструкцией системного уровня. Рассмотрим типовые ошибки возможные в схеме рис.1.3.1.

Наиболее очевидной ошибкой является несоблюдение системной характеристики, анализ которой дан в разделе 1.2.

Для Д и П возможны ошибки:

♦ не учтено какое – либо свойство среды, которое на практике все же влияет на поведение ОУ (например; не учтено какое – либо свойство исходного сырья, которое на практике влияет на технологический процесс производства);

♦ точность моделирования в датчиках занижена (завышение точности в принципе лучше);

♦ ненадежность любых компонент системы из – за их низкого качества. В свою очередь вопросы качества в современных рыночных условиях напрямую связаны со стоимостью и правдивостью рекламируемых покупных компонент.

Как указывалось, основная цель ПО – преобразование потоков информации от Д в потоки информации к П, поэтому типовой ошибкой является неправильный выбор принципа построения алгоритма преобразования информации с учетом системной характеристики. Разработку ПО необходимо строить на принципе максимальной «мобильности», т.е. возможности при эксплуатации вносить максимальные изменения с минимальными затратами.

Принцип управления объектом удобно представлять в виде процесса проталкивания («протолкнуть – толкая, продвинуть»). В зависимости от уровня, на котором рассматривается «проталкивание» в СРВ, объекты (что и чем проталкивается?) различны.

На уровне структуры СРВ (рис.1.3.1) «проталкивание» как процесс управления объектом идет от входного сигнала Xi до следующего сигнала X(i+1) (рис.1.3.2), (они «инициаторы» проталкивания). Множество таких сигналов обрабатывается в УУ. Результаты обработки представляются как множество выходных сигналов Ym для потребителей (реакции на возмущение среды).

Рис.1.3.2 Принцип «проталкивания» процесса управления на уровне

сигналов Xi и Yj

Механизм реализации принципа проталкивания. В «проталкивании» процессов управления используется принцип прерывания, при котором очередной входной сигнал Xi прерывает работу УУ для того, чтобы УУ обработало («обслужило») пришедший входной сигнал (т.е. выдало выходной сигнал Yj). Необходимость прерывания обоснована абсолютной важностью обработки каждого входного сигнала (см. рис.1.2.2).

Понятие «прерывание», как инструмента для реализации нескольких работ в реальном времени, неосознанно применяется нами в бытовых ситуациях. Примеры. 1. Дома, если у Вас зазвонил телефон, Вы прерываете свою работу и снимаете трубку (обрабатываете входной сигнал в виде телефонного звонка). После разговора Вы возвращаетесь к прерванной работе (если предположить, что разговор не требует каких – то срочных действий). Пример 2. Приготовление обеда на кухне - типичная СРВ массового обслуживания (если этот вопрос попадётся студентке, то она обязана объяснить, используя данный термин, как «работает» такая СРВ (приготовление обеда) при приготовлении первого и второго). В СРВ массового обслуживания также сохраняется требование реализации системной характеристики, но уже для каждого процесса. Такое требование еще более ужесточает требование к скорости обработки входных сигналов каждого процесса, т.к. нужно не только успеть выдать Yj для данного процесса, но и успевать обрабатывать входные сигналы от других процессов в отведенное для них время.

Режимы on-line и off-line. С точки зрения таких понятий как процесс и инструмент для реализации процесса, СРВ является инструментом, реализующим различные процессы в реальном времени. Какие могут быть типы процессов в реальном времени? Например, включённый автопилот в самолёте по заданной цели (курсу) в режиме реального времени ведёт самолёт. Другой пример. Корреспондент ведёт репортаж с места события (т.е. в режиме реального времени), но репортаж ведётся в диалоге с диктором телевидения. Процессы такого типа (диалоговые) имеют отдельное название режим on-line.

Режим on-line (в системе) определяется как диалоговый, интерактивный, оперативный режим. /Интерактивный это обозначение, с помощью которого указывается, что для системы или режима работы характерен отклик на вводимые оператором команды/. Фактически это диалоговая работа пользователя с различными удалёнными информационными ресурсами. Если же идёт трансляция, например, какого-либо концерта в режиме реального времени, то это и будет просто прямая трансляция (в режиме реального времени).

Режим off-line (автономный) определяется как приём и передача информации без непосредственного участия пользователя. Например, при работе принтера пользователь задаёт команду компьютеру, а тот на запуск принтера и далее принтер сам печатает, выбирая информацию из компьютера.