
- •Содержание
- •Введение
- •1 Общие сведения о вычислительных сетях
- •1.1 Назначение вычислительных сетей
- •1.2 Архитектура "клиент-сервер"
- •1.3 Классификация вычислительных сетей
- •1.3.1 Локальные вычислительные сети
- •1.3.2 Сети отделов, кампусов, корпоративные сети
- •1.4 Сетевые топологии и методы доступа к среде передачи данных
- •1.4.1 Шинная топология
- •1.4.2 Звездообразная топология
- •1.4.3 Кольцевая топология
- •1.4.4 Смешанные топологии
- •1.5 Основные типы кабельных сред передачи данных
- •1.5.1 Коаксиальный кабель
- •1.5.2 Витая пара
- •1.5.3 Оптоволоконный кабель
- •1.6 Контрольные вопросы
- •1.7 Тесты
- •2 Взаимодействие открытых систем
- •2.1 Эталонная модель osi
- •2.2 Характеристика стеков коммуникационных протоколов
- •2.2.1 Стек osi
- •2.2.2 Стек tcp/ip
- •2.2.3 Стек ipx/spx
- •2.3 Контрольные вопросы
- •2.4 Тесты
- •3 Объединение сетей с помощью мостов, коммутаторов и маршрутизаторов
- •3.1 Устройства объединения сетей
- •3.2 Физическая структуризация локальной сети. Повторители и концентраторы
- •3.3 Логическая структуризация сети. Мосты и коммутаторы
- •3.3.1 Как работает коммутатор
- •3.4 Маршрутизаторы
- •3.4.1 Примеры маршрутизации
- •3.5 Контрольные вопросы
- •3.6 Тесты
- •1) Какие устройства объединяют сети на физическом уровне?
- •2) Какие устройства объединяют сети на канальном уровне?
- •А) маршрутизатор; б) повторитель; в) коммутатор;
- •4 Базовые технологии локальных сетей
- •4.1 Технология Ethernet
- •4.1.1 Метод доступа csma/cd
- •4.1.2 Спецификации физической среды Ethernet
- •4.1.3 Стандарт 10Base-5
- •4.1.4 Стандарт 10Base-2
- •4.1.5 Стандарт 10Base-t
- •4.1.6 Оптоволоконный Ethernet
- •4.1.7 Домен коллизий
- •4.2 Технология Token Ring
- •4.2.1 Маркерный метод доступа к разделяемой среде
- •4.2.2 Физический уровень технологии Token Ring
- •4.3 Технология fddi
- •4.3.1 Особенности метода доступа fddi
- •4.3.2 Сравнение fddi с технологиями Ethernet и Token Ring
- •4.4 Контрольные вопросы
- •4.5 Тесты
- •5 Основы tcp/ip
- •5.1 Классификация протоколов
- •5.2 Сетевые протоколы
- •5.2.1 Протокол ip
- •5.2.3 Протокол icmp
- •5.3 Транспортные протоколы
- •5.3.1 Протокол управления передачей tcp
- •5.3.2 Протокол дейтаграмм пользователя udp
- •5.4 Связь протоколов сетевого и транспортного уровней
- •5.4.1 Структура связей протокольных модулей
- •5.5 Контрольные вопросы
- •5.6 Тесты
- •6 Информационные сервисы Internet
- •6.1 История развития сети Internet
- •6.2 Основные инструменты Internet
- •6.3 Система доменных имен
- •6.3.1 Принципы организации dns
- •6.3.2 Регистрация доменных имен
- •6.3.3 Механизм поиска ip-адреса
- •6.4 Электронная почта в Internet
- •6.4.1 Протокол smtp
- •6.4.2 Протокол рор
- •6.4.4 Формат представления почтовых сообщений mime
- •6.5 Удаленный доступ к ресурсам сети. Протокол Telnet
- •6.6 Служба архивов ftp
- •6.6.1 Протокол ftp
- •6.7 Универсальный идентификатор ресурсов uri
- •6.7.1 Схемы адресации ресурсов Internet
- •6.8 Служба www
- •6.8.1 Схема работы www сервера
- •6.8.2 Архитектура построения системы
- •6.9 Протокол обмена гипертекстовой информацией
- •6.10 Язык гипертекстовой разметки html
- •6.11 Контрольные вопросы
- •6.12 Тесты
- •Заключение
- •Список использованных источников
- •Приложение а (справочное)
4.3.1 Особенности метода доступа fddi
Для передачи синхронных кадров станция всегда имеет право захватить маркер при его поступлении. При этом время удержания маркера имеет заранее заданную фиксированную величину.
Если же станции кольца FDDI нужно передать асинхронный кадр (тип кадра определяется протоколами верхних уровней), то для выяснения возможности захвата маркера при его очередном поступлении станция должна измерить интервал времени, который прошел с момента предыдущего прихода маркера. Этот интервал называется временем оборота маркера (Token Rotation Time, TRT). Интервал TRT сравнивается с другой величиной - максимально допустимым временем оборота маркера по кольцу Т_0рг. Если в технологии Token Ring максимально допустимое время оборота маркера является фиксированной величиной (2,6 с из расчета 260 станций в кольце), то в технологии FDDI станции договариваются о величине Т_0рг во время инициализации кольца. Каждая станция может предложить свое значение Т_0рг, в результате для кольца устанавливается минимальное из предложенных станциями времен. Это позволяет учитывать потребности приложений, работающих на станциях. Обычно синхронным приложениям (приложениям реального времени) нужно чаще передавать данные в сеть небольшими порциями, а асинхронным приложениям лучше получать доступ к сети реже, но большими порциями. Предпочтение отдается станциям, передающим синхронный трафик.
Отказоустойчивость технологии FDDI. Для обеспечения отказоустойчивости в стандарте FDDI предусмотрено создание двух оптоволоконных колец - первичного и вторичного. В стандарте FDDI допускаются два вида подсоединения станций к сети. Одновременное подключение к первичному и вторичному кольцам называется двойным подключением - Dual Attachment, DA. Подключение только к первичному кольцу называется одиночным подключением - Single Attachment, SA.
В стандарте FDDI предусмотрено наличие в сети конечных узлов - станций (Station), а также концентраторов (Concentrator). Для станций и концентраторов допустим любой вид подключения к сети - как одиночный, так и двойной. Соответственно такие устройства имеют соответствующие названия: SAS (Single Attachment Station), DAS (Dual Attachment Station), SAC (Single Attachment Concentrator) и DAC (Dual Attachment Concentrator).
Обычно концентраторы имеют двойное подключение, а станции - одинарное, как это показано на рисунке 56, хотя это и не обязательно. Чтобы устройства легче было правильно присоединять к сети, их разъемы маркируются.
Рисунок 56 – Подключение узлов к кольцам FDDI
Разъемы типа А и В должны быть у устройств с двойным подключением, разъем М (Master) имеется у концентратора для одиночного подключения станции, у которой ответный разъем должен иметь тип S (Slave).
4.3.2 Сравнение fddi с технологиями Ethernet и Token Ring
В таблице 8 представлены результаты сравнения технологии FDDI с технологиями Ethernet и Token Ring.
Технология FDDI разрабатывалась для применения в ответственных участках сетей - на магистральных соединениях между крупными сетями, например сетями зданий, а также для подключения к сети высокопроизводительных серверов. Поэтому главным для разработчиков было обеспечить высокую скорость передачи данных, отказоустойчивость на уровне протокола и большие расстояния между узлами сети. Все эти цели были достигнуты. В результате технология FDDI получилась качественной, но весьма дорогой. Даже появление более дешевого варианта для витой пары не намного снизило стоимость подключения одного узла к сети FDDI. Поэтому практика показала, что основной областью применения технологии FDDI стали магистрали сетей, состоящих из нескольких зданий, а также сети масштаба крупного города, то есть класса MAN. Для подключения клиентских компьютеров и даже небольших серверов технология оказалась слишком дорогой. А поскольку оборудование FDDI выпускается уже около 10 лет, значительного снижения его стоимости ожидать не приходится.
В результате сетевые специалисты с начала 90-х годов стали искать пути создания сравнительно недорогих и в то же время высокоскоростных технологий, которые бы так же успешно работали на всех этажах корпоративной сети, как это делали в 80-е годы технологии Ethernet и Token Ring. В таблице 8 представлено сопоставление технологии FDDI с технологиями Ethernet, Token Ring.
Таблица 8 – Характеристики технологий FDDI, Ethernet, Token Ring
Характеристика |
FDDI |
Ethernet |
Token Ring |
Битовая скорость |
100Мбит/с |
10Мбит/с |
16Мбит/с |
Топология |
Двойное кольцо деревьев |
Шина/звезда
|
Звезда/кольцо |
Метод доступа |
Доля от времени оборота маркера |
CSMA/CD |
Приоритетная система резервирования |
Среда передачи данных |
Оптоволокно, неэкранированная витая пара категории 5 |
Толстый коаксиал, тонкий коаксиал, витая пара категории 3, оптоволокно |
Экранированная и неэкранированная витая пара, оптоволокно |
Максимальная длина сети (без мостов) |
200 км (100км на кольцо) |
2500м |
4000м |
Максимальное расстояние между узлами |
2км |
2500м |
100м |
Максимальное количество узлов |
500 |
1024 |
260 для экранированной витой пары, 72 для неакранированной витой пары |