Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1-razdel.doc
Скачиваний:
13
Добавлен:
30.08.2019
Размер:
519.68 Кб
Скачать

§ 4. Динамические величины и элементы теории напряжений

Для изучения движения сплошной среды в связи с причинами, которые это движение вызывают, вводят понятие о силах. Силы могут быть внешними и внутренними. Первые являются следстви­ем воздействия на рассматриваемое тело других тел, а вторые возникают в результате взаимодействия элементов данного тела. Внешние и внутренние силы могут быть двоякого рода: объемные (или массовые) и поверхностные. Объемная сила действует на массу, заключенную в произвольном элементе объема тела, например сила тяжести.

Пусть (x,t)— объемная сила, отнесенная к единице объема. Тогда сила, действующая на бесконечно малый объем dV, равна

dV, а на объем V—равна dV (рис. 4).

П оверхностная сила действует на элементы, которые можно мысленно выделить внутри тела или на его поверхности. Сила, действующая на бесконечно малый элемент поверхности dS, равна dS, где — вектор силы, рассчитанный на единицу площади элемента и приложенный в любой его точке, называется вектором напряжения или просто напряжением (см. рис. 4).

Рис. 4. Схема действия массовых и поверхностных сил в объеме V

Напряжение зависит от положения элемента dS, т. е. от ориентировки его в теле. Если требуется указать, что напряжение относится к площадке с нормалью п, то пи­шут .

Проекции этого вектора на оси произвольной системы коорди­нат Ох1х2х3 обозначаются через σnj (j=1, 2, 3). В частности, проекции напряжений отнесенные к площадкам, перпендику­лярным к координатным осям Oxi, обозначаются через σij (i,j = 1,2,3), где называются нормальными напряжениями, а (ij) касательными напряжениями, действующими на этих площадках (рис. 5). Легко доказать следующие очень важные соотношения:

σnj = (j = 1,2,3), (1.29)

которые позволяют найти компоненты вектора напряжения для произвольной площадки с нормалью , проходящей через точку М; αi = cos(n, хi) (i = 1, 2, 3).

Рис. 5. Расположение компо­нент тензора напряжений от­носительно выбранной декар­товой системы координат

Рис. 6. Векторы напряжений в точке М, действую­щие в двух произвольно ориентированных пло­щадках

Поэтому говорят, что совокупность шести величин σij, называемых компонентами симметричного тензора напряжений, полностью характеризует напряженное состояние в точке М тела.

Рис. 7. Нормальная и касательная проекции вектора напряжения

Принимая во внимание известные соотношения аналитической геометрии

из формул (1.33) после суммирования левой и правой частей по к (при r = к) получается важное соотношение

(1.35)

Оно показывает, что величина σ, называемая средним нормальным напряжением, инвариантна по отношению к преобразованию системы координат.

Характерной особенностью напряженного состояния сплошной среды является наличие в каждой точке тела, по крайней мере, трех взаимно перпендикулярных площадок, на которых касательные напряжения σii (ij) равны нулю. Направления нормалей к этим площадкам образуют главные направления, которые не зависят от исходной системы координат. Соответствующие напряжения σii=σi называются главными нормальными напряжениями. Поэто­му любое напряженное состояние в рассматриваемой точке может быть вызвано растяжением (сжатием) окрестности точки в трех взаимно перпендикулярных направлениях.

Главные нормальные напряжения могут быть найдены из следующего кубического уравнения:

корни этого уравнения могут быть только вещественными.

Так как решения этого уравнения хi = σi (i=1,2,3) не зависят от выбора системы координат, коэффициенты σ, А, В также не должны зависеть, т. е. они инвариантны. Это еще одно доказа­тельство инвариантности среднего напряжения

(1.36)

Два других инварианта

(1.37)

физического смысла не имеют.

Рис. 8. Диаграмма Мора:

1, 2, 3окружности, координаты которых определяют нор­мальные и касательные напряжения на площадках, проходящих через главные оси 1, 2, 3 соответственно

Если главные направления совпадают с координатными осями (Охi), то формулы (1.31) — (1.34) упрощаются. Например, форму­лы (1.31) и (1.32) принимают вид

(1.38)

где αi= cos (n, xi).

Отсюда нетрудно получить, что напряжения рп и τn могут лежать только внутри области, заштрихованной на рис.8. Это так называемая диаграмма Мора, дающая наглядное представление о напряжениях в различных сечениях, проходящих через данную точку. Здесь принята нумерация главных осей такой, чтобы выполнялись условия

σ1 σ2 σ3 (1.39)

Практический интерес представляют сечения, проходящие че­рез главные оси. На рис. 5 точкам какой-либо окружности 1, 2 или 3 отвечают площадки, содержащие соответствующую глав­ную ось.

Если площадка содержит главную ось Oxt и наклонена под углом θ к оси Ох2, то из формул (1.38) получается

Эти напряжения соответствуют координатам точек окружности № 1 (см. рис. 8). По аналогии можно записать формулы для напряжений, действующих на площадках, проходящих через две другие главные оси, иначе, для координат точек окружностей № 2 и 3 на рис. 8.

При θ = π/4, т. е. в сечениях, делящих пополам углы между главными плоскостями, касательные напряжения принимают экс­тремальные значения

называемые главными касательными напряжениями,

а нормальные напряжения равны полусуммам

что соответствует координатам центров окружностей 1, 2 и 3 (см. рис. 5). Наибольшее из значений τi ( i = 1, 2, 3) называется макси­мальным касательным напряжением и обозначается τmax. Если условия (1.39) выполняются, то τmax = τ2.

Так как различные тела обладают различными механическими свойствами по отношению к сдвигу и равномерному всесторон­нему сжатию, удобно компоненты тензора напряжения предста­вить в виде суммы

где Sij—компоненты тензора, характеризующего касательные на­пряжения в данной точке и называемого девиатором напряжений.

Нормальные составляющие девиатора обозначают Sii = σii — σ, а касательные составляющие sij = σij (ij).

Главные направления девиатора напряжений (Sij) и тензора напряжений (σij) совпадают, а главные значения si отличаются от σi, на величину среднего (гидростатического) давления и опреде­ляются кубическим уравнением

-s3 + A1s+B1=0,

все корни которого также вещественны.

Инварианты A1 и В1 легко получить из формул (1.37), если заменить σij на sij и σi на si.

Неотрицательную величину

(1.40)

называют интенсивностью касательных напряжений.

Часто рассматривают приведенное напряжение или интенсив­ность напряжений

(1.41)

Величина Т равна нулю только в том случае, когда напряженное состояние есть состояние гидростатического давления.

Доказывается, что с погрешностью не более 7% имеет место равенство

Т ≈ 1,08 τmax. Для характеристики вида напряженного состояния, подобно характеристике деформационного состояния, используется пара­метр, введенный Лоде и Надаи:

который изменяется в пределах от —1 до +1. Он указывает на взаимоотношение главных нормальных напряжений, в частности на положение точки σ2 на диаграмме Мора. Для одних и тех же величин μσ диаграммы Мора подобны.

Для чистого растяжения элемента (σ1>0, σ2= σ3 = 0) μσ= —1, для чистого сжатия 1 = σ2 = 0, σ3<0) μσ= 1, для сдвига (σ1>0, σ2=0, σ3= σ1) μσ= 0, для гидростатического давления 1 = σ2 = σ3) μσ не имеет смысла.

Источник и сток в пространстве.

Рассмотрим еще один важный для дальнейшего пример потенциального течения. Пусть

(**)

где , a Q = const или Q = Q (t). Ясно, что поверхностями равного потенциала = const являются в этом случае поверхности r = const, т. е. концентрические сферы с центром в начале координат. Скорость = grad ортогональна к этим сферам, т. е. направлена по радиусам. Линии тока являются лучами, выходящими из начала координат.

Пусть Q > 0; тогда, так как grad направлен в сторону роста , то направлена по r. Если Q < 0, то направлена по - r (рис. 9). Величина скорости равна:

|(grad r)| = .

Скорость стремится к нулю при r   и к бесконечности при r  0. Точки нуль и бесконечность являются критическими. При Q > 0 (1) имеем вытекание жидкости из начала координат во всех направлениях — это течение называется точечным пространственным источником. При Q < 0 (2) втекание жидкости в начало координат — сток. В первом случае в бесконечно удаленной точке имеем сток, а во втором — источник.

Рис. 9

Вычислим объем жидкости, протекающей за единицу времени через поверхность сферы S некоторого радиуса г с центром в начале координат. Через элемент сферы d за единицу времени протекает объем жидкости d, а через всю сферу

(расход жидкости)

( можно вынести за знак интеграла, так как = const на поверхности сферы). Заметим, что первые два равенства верны всегда, когда = (r) и ортогональна к поверхности сферы S. Вычисленный объем жидкости не зависит от r. Таким образом, несмотря на то, что на разных сферах разного радиуса с центром в начале координат скорости разные, постоянная Q в потенциале (**) является объемом жидкости протекающей за единицу времени через каждую такую сферу. Величина Q называется расходом или мощностью источника (стока).

Если Q = const, то источник или сток имеет постоянную мощность; если Q = Q (t) то переменную. Если в некоторый момент времени Q меняется в начале координат, то мгновенно измеряется поле скоростей во всем пространстве. Сигналы изменение Q сразу сказываются на всем поле скоростей, что, конечно, не может иметь места в действительности. Возмущения должны распространяться с некоторой конечной скоростью. Поэтому рассмотренное поле скоростей является определенной идеализацией, которая может достаточно хорошо отражать действительность только в том случае, когда рассматриваются течения жидкости с большой скоростью распространения возмущений. Во многих случаях можно считать, что такой жидкостью является, например, вода, в которой скорость распространения слабых возмущений 1450 м/сек.

20

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]