- •Розділ 1. Основні поняття медичної інформатики. Комп’ютер у діяльності майбутнього лікаря
- •1.1. Основні поняття медичної інформатики
- •Інформація та її визначення
- •Носії повідомлень
- •Визначення кількості інформації
- •Представлення інформації в комп’ютері
- •Системи числення
- •Десяткова система числення
- •Двійкова (бінарна) система числення
- •Переведення числової інформації з десяткової системи числення в двійкову
- •Кодування нечислової інформації
- •Логічні елементи в комп’ютері
- •Предмет та об’єкт медичної інформатики
- •Медична інформація та її види
- •Інформація, дані, знання
- •Типи медичних знань.
- •Інформаційний медичний документ
- •Опис даних: якісні, порядкові та кількісні дані. Шкали вимірювання
- •Якісні дані. Шкала класифікації (номінальна).
- •Порядкові дані. Шкала порядку.
- •Кількісні дані. Шкала інтервалів і шкала відношень.
- •Медичні дані
- •Питання для самоконтролю
- •1.2. Передача інформації. Мережеві технології. Основи телемедицини Передача інформації, схема передачі інформації
- •Основні поняття комп’ютерних мереж
- •Комунікаційне обладнання
- •Комунікаційне програмне забезпечення
- •Класифікація комп’ютерних мереж
- •Локальні мережі
- •Глобальні мережі
- •Глобальна мережа Internet та її можливості
- •Виникнення глобальної мережі Internet.
- •Протоколи мережі Internet.
- •Ідентифікація комп’ютерів в мережі. Адресація в Internet.
- •Основні послуги Internet.
- •Робота з електронною поштою
- •Поштові адреси та структура електронного листа.
- •Робота з гіпертекстовими сторінками World Wide Web.
- •Пошук в Internet
- •Робота з файлами засобами ftp-сервера
- •Загальні алгоритми пошуку інформації в Internet .
- •Основи телемедицини
- •Технології, що застосовуються у телемедицині
- •Будова телемедичних систем. Засоби передачі інформації в телемедицині
- •Функції телемедичних центрів
- •Стандарти, які застосовуються в телемедицині.
- •Стандарт Health Level 7
- •Проблеми телемедицини
- •Питання для самоконтролю
- •1.3. Комп’ютерні дані: типи даних, обробка та управління. Основні концепції баз даних
- •Класифікація баз даних
- •Основні типи моделей даних
- •Ієрархічна модель даних.
- •Модель даних типу мережа.
- •Реляційна модель даних.
- •Класифікація сучасних систем керування базами даних
- •Мовні засоби систем керування базами даних
- •Майбутнє субд
- •Питання для самоконтролю
- •Розділ 2. Медичні дані. Методологія обробки та аналізу інформації.
- •2.1. Кодування та класифікація. Історія класифікації і кодування
- •Поняття класифікації
- •Двоосьова icpc .
- •Поняття кодування
- •Проблеми класифікації та кодування
- •Класифікаційні системи
- •Системи класифікації в Україні
- •Питання для самоконтролю
- •2.2. Аналіз біосигналів. Методи обробки біосигналів. Візуалізація медико-біологічних даних. Обробка та аналіз медичних зображень. Біосигнали та їх обробка.
- •Реєстрація, трансформація та класифікація сигналів
- •Біосигнали і нестаціонарні сигнали.
- •Типи сигналів.
- •Приклади застосування аналізу біосигналів
- •Поняття медичного зображення.
- •Формування медичних зображень
- •Медичне зображення як об’єкт медичної інформатики.
- •Методи отримання медичних зображень
- •Обробка медичних зображень.
- •Основні принципи обробки зображень.
- •Попередня обробка.
- •Зміна контрастності зображення.
- •Затемнення і видимість деталей зображення
- •Зменшення шуму.
- •Квантування рівня сірого
- •Відновлення зображень
- •Покращення зображень
- •Методика виявлення краю або контуру
- •Сегментація.
- •Стиснення зображення
- •Перетворення зображення
- •Повне перетворення
- •Розрахунок параметрів.
- •Інтерпретація зображень.
- •Проблеми обробки та аналізу зображень
- •Проблема візуалізації зображень.
- •Двовимірні томографічні зображення.
- •Тривимірне об’ємне зображення.
- •Способи двовимірної візуалізації.
- •Способи дійсної три вимірної візуалізації.
- •Застосування тривимірної візуалізації.
- •Сучасні тенденції обробки зображень
- •Обробка двовимірних та тривимірних медичних зображень. Обробка двовимірних медичних зображень
- •Обробка тривимірних медичних зображень
- •Питання для самоконтролю
- •2.4. Методи біостатистики. Сучасна технологія аналізу даних
- •Планування дослідження.
- •Підготовка даних до аналізу
- •Попередній аналіз даних
- •Вибір і реалізація методу аналізу
- •Закони розподілу дискретних випадкових величин Біноміальний розподіл (розподіл Бернуллі)
- •Розподіл Пуассона
- •Закони розподілу неперервних випадкових величин Нормальний закон розподілу (Гауса)
- •Розподіл
- •Розподіл Ст’юдента (Госсета)
- •Емпіричні закони розподілу випадкових величин
- •Оцінка параметрів розподілу та перевірка гіпотез Загальні поняття
- •Етапи перевірки гіпотез
- •Критерії перевірки гіпотез
- •Стійкість критеріїв
- •Послідовність операцій при виборі критерію
- •Постановка задачі
- •Визначення додаткових умов вибору критерію
- •Вибір конкретного критерію
- •Вимоги до вибірок
- •Критерій (критерій Пірсона)
- •Кореляційний аналіз
- •Регресійний аналіз
- •Тестові завдання для самоконтролю
- •Розділ 3. Медичні знання та прийняття рішень в медицині
- •3.1. Формалізація та алгоритмізація медичних задач. Основні поняття
- •Алгоритми та їх властивості.
- •Способи подання алгоритмів
- •Типи алгоритмів та їх структурні схеми Лінійні алгоритми
- •Циклічні алгоритми
- •Цикл-поки
- •Цикл-до
- •Питання для самоконтролю
- •3.2. Формальна логіка у вирішенні медико-біологічних задач. Основи логіки висловлень
- •Поняття висловлення
- •Множина значень висловлення
- •Алфавіт логіки висловлень
- •Логічні операції та таблиці істинності. Бінарні і унарні операції
- •Операція заперечення.
- •Операція кон’юнкції
- •Операція диз’юнкції
- •Операція імплікації
- •Операція еквівалентності
- •Діаграми Вена
- •Властивості логічних операцій
- •Основні логічні функції.
- •Логічна функція якщо
- •Способи подання логічних функцій
- •Питання для самоконтролю
- •3.3. Методи підтримки прийняття рішень. Стратегії отримання медичних знань Типи діагностичних і прогностичних технологій
- •Види лікарської логіки.
- •Детерміністична логіка
- •Табличні методи
- •Машинні технології
- •Логіка фазових інтервалів
- •Фазовий простір станів
- •Застосування ймовірнісної логіки в діагностиці
- •Основи теорії ймовірнісної діагностики
- •Розробка систем ймовірнісної діагностики
- •Приклад застосування систем ймовірнісної діагностики
- •Метод послідовного статистичного аналізу Вальда
- •Визначення й архітектура систем знань
- •Людина і комп’ютер
- •Експертні системи в медицині
- •Штучний інтелект.
- •Історія ес
- •Розробка експертних систем
- •База знань
- •Формальні моделі зображення знань
- •Продукційні моделі
- •Семантичні моделі
- •Модель типу фрейм
- •Характеристики експертних систем
- •Приклади застосування експертних систем
- •Тенденції розвитку систем знань
- •Питання для самоконтролю
- •3.4. Клінічні системи підтримки прийняття рішень. Засоби прогнозування. Моделювання медико-біологічних процесів . Поняття системи
- •Властивості систем
- •Структура систем
- •Загальна теорія систем. Системний підхід
- •Поняття моделі. Типи моделей
- •Типи моделей
- •Математична модель. Історія
- •Ступені складності математичної моделі
- •Ступені адекватності
- •Математичне моделювання
- •Етапи математичного моделювання
- •Обмеження і переваги методу математичного моделювання
- •Приклади математичних моделей.
- •1. Гемодинаміка судинного русла
- •2. Модель зміни концентрації лікарського препарату в крові пацієнта
- •3. Моделювання росту популяцій
- •57. Випадкові відхилення 58. Випадкові відхилення
- •4. Математична модель «хижак – жертва»
- •5. Моделювання клітинного росту
- •6. Математичне моделювання в імунології.
- •7. Моделювання епідемічних процесів
- •Питання для самоконтролю
- •3.5. Доказова медицина Доказова медицина. Принципи доказової медицини
- •Визначення доказовості
- •Аспекти доказової медицини
- •Умови ефективного функціонування доказової медицини
- •Алгоритм дій
- •Мета-аналіз
- •Види мета-аналізу
- •Переваги мета-аналізу
- •Проблеми мета-аналізу
- •Кокранівські бази даних
- •Принципи Кокранівського Співробітництва
- •Проблемні групи зі створення систематичних оглядів
- •Кокранівські робочі групи з методології оглядів
- •Кокранівські спеціалізовані групи
- •Кокранівські центри
- •Кокранівська мережа споживачів
- •Кокранівська електронна бібліотека
- •Кокранівська база даних систематичних оглядів
- •Кокранівський реєстр контрольованих випробувань
- •Прийняття оптимальних рішень в охороні здоров’я
- •Тенденції розвитку Кокранівського Співробітництва
- •Стислий довідник з доказової медицини
- •Принципи створення довідника
- •І. Систематичні огляди як джерело доказів.
- •Іі. Рандомізовані контрольовані випробування як джерела доказів
- •Особливості викладу матеріалу
- •Питання для самоконтролю
- •Розділ 4. Системи, направлені на пацієнтів, та інституційні інформаційні системи в охороні здоров’я
- •4.1. Типи інформаційних систем в галузі охорони здоров’я. Госпітальні інформаційні системи та їх розвиток. Вимоги до інформації
- •Основні аспекти інформатизації медичної діяльності
- •Загальна технологічна схема діагностично-лікувального процесу.
- •Етапи створення і основні характеристики міс
- •Класифікація медичних інформаційних систем
- •Медичні інформаційні системи базового рівня
- •Інформаційно довідкові системи.
- •Консультативно-діагностичні системи.
- •Арм лікаря.
- •Автоматизоване робоче місце лікаря діагноста
- •Медичні інформаційні системи рівня лікувально-профілактичного закладу
- •Інформаційні системи консультативних центрів.
- •Скрінінгові системи.
- •Інформаційні системи лікувально-профілактичної установи Особливості організації інформаційного середовища лікувально профілактичної установи
- •Основні типи даних
- •Інформаційні системи поліклінічного обслуговування.
- •Міс територіального і державного рівня
- •Інформаційне забезпечення міс
- •Госпітальні інформаційні системи
- •Архітектура гіс.
- •Автоматизовані робочі місця головного лікаря та його замісників.
- •Регістратура
- •Електронна медична карта (емк)
- •Стаціонар
- •Лабораторні дослідження.
- •Операційна
- •Облік лікарських засобів.
- •Питання для самоконтролю
- •4.2. Електронна медична картка. Ведення медичної документації за допомогою персонального комп’ютера.
- •Концепція побудови електронних медичних карток
- •Ступінь захисту інформації про пацієнтів
- •Система медичного документообігу закладів охорони здоров’я
- •Структура системи
- •Етапи документообігу
- •Питання для самоконтролю
- •4.3. Інформаційні ресурси системи охорони здоров’я
- •4.4. Етичні та правові принципи в системі охорони здоров’я Захист медичної інформації
- •Медична інформаційна система як об’єкт захисту
- •Проблеми організації захисту лікарської таємниці
- •Загрози інформації, що містить лікарську таємницю.
- •Проблеми впровадження комплексних систем захисту.
- •Вимоги до моделі процесів інформаційної безпеки.
- •Формування моделі інформаційної безпеки.
- •Питання для самоконтролю
- •Додатки Нейронні мережі.
- •Основні поняття
- •Моделі нейронних мереж Багатошаровий персептрон
- •Ймовірнісна нейронна мережа в задачах класифікації.
- •Узагальнено-регресійна нейронна мережа в задачах регресії
- •Карти Кохонена, що самоорганізуються
- •Лінійна мережа
- •Алгоритм побудови нейронних мереж Оцінка адекватності нейромережевих моделей
- •Методика побудови нейронної мережі в пакеті neuropro 0.25.
- •Розпізнавання образів у програмі емуляції нейронної мережі «numbers»
- •Класифікація даних на прикладі аналізу «ірисів фішера»
- •Поняття про приборно – комп’ютерні системи.
- •Коротка історична довідка.
- •Класифікація медичних приборно-комп’ютерних систем
- •Класифікація за функціональними можливостями
- •Класифікація за призначенням
- •Основні принципи побудови мпкс Структура мпкс.
- •Медичне забезпечення
- •Апаратне забезпечення мпк Деякі елементи обчислювальної техніки
- •Програмне забезпечення мпкс.
- •1. Підготовки дослідження.
- •2. Проведення дослідження.
- •3. Перегляду і редагування записів.
- •4. Обчислювального аналізу.
- •5. Оформлення висновку.
- •6. Роботи з архівом.
- •Системи для проведення функціональної діагностики. Системи для дослідження функцій кровообігу.
- •Комп’ютерна електрокардіографія
- •Комп’ютерна реографія.
- •Системи для дослідження органів дихання.
- •Системи для дослідження головного мозку
- •Комп’ютерна електроенцефалограма
- •Системи для ультразвукових досліджень
- •Комп’ютерна ехотомографія
- •Інші типи спеціалізованих систем
- •Методи обробки й аналізу медичних зображень.
- •Мпкс для рентгенівських досліджень
- •Мпкс для магнітно-резонансних досліджень.
- •Мпкс для радіонуклідних досліджень(рнд).
- •Багатофункціональні системи
- •Системи для проведення моніторингу
- •Специфіка моніторингових систем
- •Електрокардіографічний моніторинг
- •Системи управління лікувальним процесом.
- •Системи інтенсивної терапії.
- •Системи оберненого біологічного зв’язку.
- •Системи протезування та штучні органи.
- •Перспективи розвитку мпкс
- •Питання для самоконтролю
Формальні моделі зображення знань
Сучасні медичні експертні системи найчастіше використовують такі формальні моделі зображення знань: семантичні, фрейми, продукційні правила. Розглянемо їх більш детально.
Продукційні моделі
Широкий клас експертних систем використовує загальну схему подання знань у вигляді системи продукцій. Це найбільш розповсюджений спосіб представлення знань у вигляді елементарних фактів і правил, за якими з наявних фактів можуть бути виведені нові. Факти можуть бути представлені у вигляді трійок:
(АТРИБУТ, ОБ’ЄКТ, ЗНАЧЕННЯ).
Такий факт означає, що даний об’єкт має заданий атрибут (властивість) із заданим значенням. Наприклад, трійка (Температура, пацієнт, 37,5) представляє факт «температура хворого, що позначається як пацієнт, дорівнює 37,5 градусів». Такий спосіб представлення фактів прийнятий у системі MYCIN. У більш простих випадках факт виражається не конкретним значенням атрибута, а яким-небудь простим твердженням, що може бути істинним або хибним, наприклад «Небо вкрите хмарами». У таких випадках факт можна позначати яким-небудь коротким ім’ям або використовувати для подання факту сам текст відповідної фрази.
Правила в базі знань мають вигляд:
ЯКЩО C ТО D, де C – умова, D – дія.
Дія D виконується, якщо C істинно. Найбільш часто дія, так само, як і умова, являє собою твердження.
Правила в базі знань служать для представлення евристичних знань (евристик), тобто неформальних алгоритмів міркувань, вироблених експертом на основі досвіду його роботи.
В якості умови А може виступати або елементарний факт, або кілька фактів з’єднаних логічною операцією І: А і А1 і А2 і... Аn. У математичній логіці такий вираз називається кон’юнкцією.
Він вважається істинним у тому випадку, якщо істинні всі його компоненти. Дії, що входять до складу правил, можуть містити нові факти. При застосуванні таких правил ці факти стають відомі системі, тобто включаються в множину фактів, що називається робочою множиною. Якщо система не може вивести деякий факт, істинність або хибність якого потрібно установити, то система запитує про нього користувача.
У разі використання формально-логічної моделі, сукупність знань експерта про ПрО записують у такій формі:
(n); S; U; C D; P; де n – ім’я продукції; S – характеристика сфери застосування продукції; U – умова застосування; C D – ядро (конструкція ЯКЩО C ТО D ); C – кон’юнкція елементарних фактів чи їх заперечень; D – елементарний факт; P – визначає постумови продукції, що виконуються після її реалізації.
Продукцiйнi правила описують знання у формі «ЯКЩО ТО» і забезпечують формальний спосіб зображення вказівок, рекомендацій або стратегій. Використання правил спрощує роз’яснення того, яким чином система дійшла до конкретного висновку. Простота та наочність цього способу обумовили його використання у багатьох системах. Але, у разі використання формально-логічних моделей можливий опис лише узагальнених знань про дійсність.
Ядро продукційного правила для експертних систем на логіко-ймовірнісних моделях мас вигляд :
C (D, W), де W – оцінка правдоподібності висунутої гіпотези.
Якщо оцінки W є ймовірностями, то ця схема визначає ймовірнісний висновок, якщо W – числові ваги, то говорять про приблизний висновок, а якщо W має словесні оцінки, то висновок називають розмитим (нечітким).
Під системою продукцій розуміється певний метод організації обчислювального процесу, при якому програма перетворення визначеної інформаційної структури задається у вигляді множини правил-продукцій. Кожне правило тут подається у вигляді «умова застосування → дія», або «передумова → висновок». Умова застосування визначає деякі вимоги до певного стану інформаційної структури, а дія містить у собі опис операцій над інформаційною структурою, які треба виконати, якщо її стан задовольняє цим вимогам. Зміст дій може полягати у впливі на управління програмою (наприклад, виконати перевірку деякого набору правил), зводитися до вказівки системі про отримання певного висновку (наприклад, додати новий факт або гіпотезу до бази даних).
До складових частин продукцiйної системи звичайно належать база фактів, база правил, механізм виводу та, іноді, механізм роз’яснення. База фактів містить фактичні дані, що описують поточну задачу і вводяться в комп’ютер, і стани системи. База даних в різних системах має різну форму, але загалом вона може бути описана як група даних, яка містить ім’я даних, атрибути та їх значення. Факти, що є умовами та наслідками правил, розміщуються на тимчасове зберігання в базі фактів.
База правил містить сукупність правил, які використовують факти як основу для прийняття рішень. Більшість із правил експертних систем є евристичними, тобто емпіричними правилами або спрощеннями, що ефективно обмежують пошук рішення. Експертна система використовує евристику, тому що задачі, котрі вона вирішує, не піддаються чіткому математичному аналізу, або алгоритмічному вирішенню. Алгоритмічний метод гарантує оптимальне вирішення задач, тоді як евристичний метод дає в більшості випадків прийнятне рішення. Використання евристичних правил робить пошук рішення найбільш легким та практичним.
До складових частин механізму виводу належать:
інтерпретатор правил, що містить загальні знання про схему управління вирішенням задач, визначає, як використовувати правила для виводу нових знань і формує висновок, використовуючи базу правил та базу фактів;
диспетчер, що встановлює порядок використання правил.
Отже, в експертних системах, основу яких складають продукційні правила, предметні знання подаються у вигляді набору правил, що перевіряються на групі фактів або знань про поточну ситуацію. Коли частина правила ЯКЩО задовольняє фактам, то дія, що вказана в частині ТО, виконується. В цьому випадку вважається, що правило виконане, і інтерпретатор правил починає робити співставлення частки правил ЯКЩО з фактами і виконувати те правило, частка ЯКЩО якого узгоджується з фактами. Зміст дії правила може полягати у модифікації набору фактів у базі знань, наприклад, у додаванні нового факту. В цьому випадку нові факти, що додаються до бази знань, використовують для співставлення з частками правил ЯКЩО. Процес співставлення цих правил з фактами часток ЯКЩО утворює ланцюг виводу.
Наведемо приклад продукцiйного правила (його зовнішнє зображення), що міститься серед знань у вищезазначеній системі MYCIN:
ЯКЩО Не відомо, може чи ні організм розвиватися аеробно
ТА Середовищем для культури служить кров,
АБО Лабораторія спробувала вирощувати організм анаеробно
ТА Організм здатний рости анаеробно
ТО Існують підстави вважати, що аеробність організму невизначена (0,5) або він анаеробний (0,2).
Тут 0,5 та 0,2 – коефіцієнти правдоподібності зазначених тверджень.
Механізм, реалізований як засіб виводу в системi продукцій, нескладний. Він реалізує функції пошуку у базі знань, послідовне виконання операцій над знаннями та отримання висновків – прямі дедуктивні висновки (прямий ланцюг суджень) та зворотні дедуктивні висновки (зворотний ланцюг суджень). Відомо, що дедукція – така форма мислення, за допомогою якої певна думка логічним шляхом виводиться з думок-посилок.
У прямих дедуктивних висновках рух здійснюється до поставленої мети з послідовним використанням правил до даних (фактів), що приймаються за початок. Спочатку обирається один із елементів даних, який міститься у базі фактів. Коли при порівнянні цей елемент узгоджується з посилкою правила, то можливі такі дії: або з правила виводиться відповідний висновок, який розташовується у базі фактів, або здійснюється дія, яка визначається правилом, та відповідним чином змінюється зміст бази фактів. Таким чином, починаючи з уже відомих результатів до системи продукцій послідовно виводяться нові. Висновки, за якими цей процес рухається в напрямку від поставленої мети до початку, називаються зворотними. Коли ця мета узгоджується з висновком правила, то посилка правила приймається за прототип мети, чи гіпотезу, i цей процес повторюється до тих пір, доки не буде отримано збігу по меті (або гіпотезі) з отриманими даними.
В діагностичній медичній практиці встановлення ймовірного діагнозу хвороби опосередковано, як правило, через проміжний імовірнісний діагноз, ступінь імовірності якого залежить від специфіки встановлених ознак хвороби. З точки зору фізіології імовірнісний характер встановленого діагнозу пояснюється, як правило, великою кількістю варіантів можливих проявів певного захворювання в залежності від індивідуальних особливостей кожного хворого (його конституції, стану імунної системи, віку, статі, професії тощо).
Метод імовірного діагнозу, таким чином, вимагає використання в діагностиці діагностичних гіпотез. Підставою для побудови діагностичних гіпотез служить аналогія, коли при збігові декількох симптомів даного хворого із симптомами будь-якого захворювання робиться припущення, що у хворого є захворювання, із яким, імовірно, буде більше або менше збігу і за іншими ознаками. Чим менше є симптомів, тим більш можливими є різні припущення щодо діагнозу.
Діагностична гіпотеза вважається правомірною, якщо вона виводиться із фактів, що не суперечать жодному з наявних фактів-симптомів і містить узагальнюючі висновки, на основі яких гіпотеза може бути перевірена за допомогою нових фактів, що встановлені в процесі обстеження та спостереження за хворим. В процесі діагностики кількість гіпотез повинна бути доведена до мінімуму (необхідно прагнути роз’яснити за допомогою однієї гіпотези як можна більшу кількість наявних фактів). Перевага надається гіпотезам, які побудовані при найменшій кількості припущень, але найбільш багаті щодо висновків і відрізняються простотою. Необхідною умовою методу ймовірного діагнозу є різнобічна перевірка гіпотези, в тому числі шляхом виявлення і вивчення клінічних симптомів, що суперечать даній гіпотезі.
Принципам діагностики властива універсальність, яка дозволяє за єдиною методологією діагностувати будь-яку патологію усіх органів та систем організму. Тому таким важливим для майбутніх лікарів є розуміння принципу функціонування (механізму виводу) продукційних експертних систем, що являють собою модель для вивчення процесу прийняття медичних рішень.
Відносно низька ефективність у порівнянні з традиційними методами програмування є одним з недоліків продукційного методу зображення знань. Це пов’язано з тим, що модульна організація бази знань потребує концентрації інформації у посилці, що в складних ситуаціях призводить до побудови заплутаних умов.
Недоліком логіко-ймовірнісних моделей є й те, що оцінки правдоподібності суттєво залежать від суб’єктивно заданих для кожного правила умовних ймовірностей або числових ваг. Більш того, невеликі варіації вихідних ймовірностей можуть спричинити до значних змін в оцінці правдоподібності.