- •Розділ 1. Основні поняття медичної інформатики. Комп’ютер у діяльності майбутнього лікаря
- •1.1. Основні поняття медичної інформатики
- •Інформація та її визначення
- •Носії повідомлень
- •Визначення кількості інформації
- •Представлення інформації в комп’ютері
- •Системи числення
- •Десяткова система числення
- •Двійкова (бінарна) система числення
- •Переведення числової інформації з десяткової системи числення в двійкову
- •Кодування нечислової інформації
- •Логічні елементи в комп’ютері
- •Предмет та об’єкт медичної інформатики
- •Медична інформація та її види
- •Інформація, дані, знання
- •Типи медичних знань.
- •Інформаційний медичний документ
- •Опис даних: якісні, порядкові та кількісні дані. Шкали вимірювання
- •Якісні дані. Шкала класифікації (номінальна).
- •Порядкові дані. Шкала порядку.
- •Кількісні дані. Шкала інтервалів і шкала відношень.
- •Медичні дані
- •Питання для самоконтролю
- •1.2. Передача інформації. Мережеві технології. Основи телемедицини Передача інформації, схема передачі інформації
- •Основні поняття комп’ютерних мереж
- •Комунікаційне обладнання
- •Комунікаційне програмне забезпечення
- •Класифікація комп’ютерних мереж
- •Локальні мережі
- •Глобальні мережі
- •Глобальна мережа Internet та її можливості
- •Виникнення глобальної мережі Internet.
- •Протоколи мережі Internet.
- •Ідентифікація комп’ютерів в мережі. Адресація в Internet.
- •Основні послуги Internet.
- •Робота з електронною поштою
- •Поштові адреси та структура електронного листа.
- •Робота з гіпертекстовими сторінками World Wide Web.
- •Пошук в Internet
- •Робота з файлами засобами ftp-сервера
- •Загальні алгоритми пошуку інформації в Internet .
- •Основи телемедицини
- •Технології, що застосовуються у телемедицині
- •Будова телемедичних систем. Засоби передачі інформації в телемедицині
- •Функції телемедичних центрів
- •Стандарти, які застосовуються в телемедицині.
- •Стандарт Health Level 7
- •Проблеми телемедицини
- •Питання для самоконтролю
- •1.3. Комп’ютерні дані: типи даних, обробка та управління. Основні концепції баз даних
- •Класифікація баз даних
- •Основні типи моделей даних
- •Ієрархічна модель даних.
- •Модель даних типу мережа.
- •Реляційна модель даних.
- •Класифікація сучасних систем керування базами даних
- •Мовні засоби систем керування базами даних
- •Майбутнє субд
- •Питання для самоконтролю
- •Розділ 2. Медичні дані. Методологія обробки та аналізу інформації.
- •2.1. Кодування та класифікація. Історія класифікації і кодування
- •Поняття класифікації
- •Двоосьова icpc .
- •Поняття кодування
- •Проблеми класифікації та кодування
- •Класифікаційні системи
- •Системи класифікації в Україні
- •Питання для самоконтролю
- •2.2. Аналіз біосигналів. Методи обробки біосигналів. Візуалізація медико-біологічних даних. Обробка та аналіз медичних зображень. Біосигнали та їх обробка.
- •Реєстрація, трансформація та класифікація сигналів
- •Біосигнали і нестаціонарні сигнали.
- •Типи сигналів.
- •Приклади застосування аналізу біосигналів
- •Поняття медичного зображення.
- •Формування медичних зображень
- •Медичне зображення як об’єкт медичної інформатики.
- •Методи отримання медичних зображень
- •Обробка медичних зображень.
- •Основні принципи обробки зображень.
- •Попередня обробка.
- •Зміна контрастності зображення.
- •Затемнення і видимість деталей зображення
- •Зменшення шуму.
- •Квантування рівня сірого
- •Відновлення зображень
- •Покращення зображень
- •Методика виявлення краю або контуру
- •Сегментація.
- •Стиснення зображення
- •Перетворення зображення
- •Повне перетворення
- •Розрахунок параметрів.
- •Інтерпретація зображень.
- •Проблеми обробки та аналізу зображень
- •Проблема візуалізації зображень.
- •Двовимірні томографічні зображення.
- •Тривимірне об’ємне зображення.
- •Способи двовимірної візуалізації.
- •Способи дійсної три вимірної візуалізації.
- •Застосування тривимірної візуалізації.
- •Сучасні тенденції обробки зображень
- •Обробка двовимірних та тривимірних медичних зображень. Обробка двовимірних медичних зображень
- •Обробка тривимірних медичних зображень
- •Питання для самоконтролю
- •2.4. Методи біостатистики. Сучасна технологія аналізу даних
- •Планування дослідження.
- •Підготовка даних до аналізу
- •Попередній аналіз даних
- •Вибір і реалізація методу аналізу
- •Закони розподілу дискретних випадкових величин Біноміальний розподіл (розподіл Бернуллі)
- •Розподіл Пуассона
- •Закони розподілу неперервних випадкових величин Нормальний закон розподілу (Гауса)
- •Розподіл
- •Розподіл Ст’юдента (Госсета)
- •Емпіричні закони розподілу випадкових величин
- •Оцінка параметрів розподілу та перевірка гіпотез Загальні поняття
- •Етапи перевірки гіпотез
- •Критерії перевірки гіпотез
- •Стійкість критеріїв
- •Послідовність операцій при виборі критерію
- •Постановка задачі
- •Визначення додаткових умов вибору критерію
- •Вибір конкретного критерію
- •Вимоги до вибірок
- •Критерій (критерій Пірсона)
- •Кореляційний аналіз
- •Регресійний аналіз
- •Тестові завдання для самоконтролю
- •Розділ 3. Медичні знання та прийняття рішень в медицині
- •3.1. Формалізація та алгоритмізація медичних задач. Основні поняття
- •Алгоритми та їх властивості.
- •Способи подання алгоритмів
- •Типи алгоритмів та їх структурні схеми Лінійні алгоритми
- •Циклічні алгоритми
- •Цикл-поки
- •Цикл-до
- •Питання для самоконтролю
- •3.2. Формальна логіка у вирішенні медико-біологічних задач. Основи логіки висловлень
- •Поняття висловлення
- •Множина значень висловлення
- •Алфавіт логіки висловлень
- •Логічні операції та таблиці істинності. Бінарні і унарні операції
- •Операція заперечення.
- •Операція кон’юнкції
- •Операція диз’юнкції
- •Операція імплікації
- •Операція еквівалентності
- •Діаграми Вена
- •Властивості логічних операцій
- •Основні логічні функції.
- •Логічна функція якщо
- •Способи подання логічних функцій
- •Питання для самоконтролю
- •3.3. Методи підтримки прийняття рішень. Стратегії отримання медичних знань Типи діагностичних і прогностичних технологій
- •Види лікарської логіки.
- •Детерміністична логіка
- •Табличні методи
- •Машинні технології
- •Логіка фазових інтервалів
- •Фазовий простір станів
- •Застосування ймовірнісної логіки в діагностиці
- •Основи теорії ймовірнісної діагностики
- •Розробка систем ймовірнісної діагностики
- •Приклад застосування систем ймовірнісної діагностики
- •Метод послідовного статистичного аналізу Вальда
- •Визначення й архітектура систем знань
- •Людина і комп’ютер
- •Експертні системи в медицині
- •Штучний інтелект.
- •Історія ес
- •Розробка експертних систем
- •База знань
- •Формальні моделі зображення знань
- •Продукційні моделі
- •Семантичні моделі
- •Модель типу фрейм
- •Характеристики експертних систем
- •Приклади застосування експертних систем
- •Тенденції розвитку систем знань
- •Питання для самоконтролю
- •3.4. Клінічні системи підтримки прийняття рішень. Засоби прогнозування. Моделювання медико-біологічних процесів . Поняття системи
- •Властивості систем
- •Структура систем
- •Загальна теорія систем. Системний підхід
- •Поняття моделі. Типи моделей
- •Типи моделей
- •Математична модель. Історія
- •Ступені складності математичної моделі
- •Ступені адекватності
- •Математичне моделювання
- •Етапи математичного моделювання
- •Обмеження і переваги методу математичного моделювання
- •Приклади математичних моделей.
- •1. Гемодинаміка судинного русла
- •2. Модель зміни концентрації лікарського препарату в крові пацієнта
- •3. Моделювання росту популяцій
- •57. Випадкові відхилення 58. Випадкові відхилення
- •4. Математична модель «хижак – жертва»
- •5. Моделювання клітинного росту
- •6. Математичне моделювання в імунології.
- •7. Моделювання епідемічних процесів
- •Питання для самоконтролю
- •3.5. Доказова медицина Доказова медицина. Принципи доказової медицини
- •Визначення доказовості
- •Аспекти доказової медицини
- •Умови ефективного функціонування доказової медицини
- •Алгоритм дій
- •Мета-аналіз
- •Види мета-аналізу
- •Переваги мета-аналізу
- •Проблеми мета-аналізу
- •Кокранівські бази даних
- •Принципи Кокранівського Співробітництва
- •Проблемні групи зі створення систематичних оглядів
- •Кокранівські робочі групи з методології оглядів
- •Кокранівські спеціалізовані групи
- •Кокранівські центри
- •Кокранівська мережа споживачів
- •Кокранівська електронна бібліотека
- •Кокранівська база даних систематичних оглядів
- •Кокранівський реєстр контрольованих випробувань
- •Прийняття оптимальних рішень в охороні здоров’я
- •Тенденції розвитку Кокранівського Співробітництва
- •Стислий довідник з доказової медицини
- •Принципи створення довідника
- •І. Систематичні огляди як джерело доказів.
- •Іі. Рандомізовані контрольовані випробування як джерела доказів
- •Особливості викладу матеріалу
- •Питання для самоконтролю
- •Розділ 4. Системи, направлені на пацієнтів, та інституційні інформаційні системи в охороні здоров’я
- •4.1. Типи інформаційних систем в галузі охорони здоров’я. Госпітальні інформаційні системи та їх розвиток. Вимоги до інформації
- •Основні аспекти інформатизації медичної діяльності
- •Загальна технологічна схема діагностично-лікувального процесу.
- •Етапи створення і основні характеристики міс
- •Класифікація медичних інформаційних систем
- •Медичні інформаційні системи базового рівня
- •Інформаційно довідкові системи.
- •Консультативно-діагностичні системи.
- •Арм лікаря.
- •Автоматизоване робоче місце лікаря діагноста
- •Медичні інформаційні системи рівня лікувально-профілактичного закладу
- •Інформаційні системи консультативних центрів.
- •Скрінінгові системи.
- •Інформаційні системи лікувально-профілактичної установи Особливості організації інформаційного середовища лікувально профілактичної установи
- •Основні типи даних
- •Інформаційні системи поліклінічного обслуговування.
- •Міс територіального і державного рівня
- •Інформаційне забезпечення міс
- •Госпітальні інформаційні системи
- •Архітектура гіс.
- •Автоматизовані робочі місця головного лікаря та його замісників.
- •Регістратура
- •Електронна медична карта (емк)
- •Стаціонар
- •Лабораторні дослідження.
- •Операційна
- •Облік лікарських засобів.
- •Питання для самоконтролю
- •4.2. Електронна медична картка. Ведення медичної документації за допомогою персонального комп’ютера.
- •Концепція побудови електронних медичних карток
- •Ступінь захисту інформації про пацієнтів
- •Система медичного документообігу закладів охорони здоров’я
- •Структура системи
- •Етапи документообігу
- •Питання для самоконтролю
- •4.3. Інформаційні ресурси системи охорони здоров’я
- •4.4. Етичні та правові принципи в системі охорони здоров’я Захист медичної інформації
- •Медична інформаційна система як об’єкт захисту
- •Проблеми організації захисту лікарської таємниці
- •Загрози інформації, що містить лікарську таємницю.
- •Проблеми впровадження комплексних систем захисту.
- •Вимоги до моделі процесів інформаційної безпеки.
- •Формування моделі інформаційної безпеки.
- •Питання для самоконтролю
- •Додатки Нейронні мережі.
- •Основні поняття
- •Моделі нейронних мереж Багатошаровий персептрон
- •Ймовірнісна нейронна мережа в задачах класифікації.
- •Узагальнено-регресійна нейронна мережа в задачах регресії
- •Карти Кохонена, що самоорганізуються
- •Лінійна мережа
- •Алгоритм побудови нейронних мереж Оцінка адекватності нейромережевих моделей
- •Методика побудови нейронної мережі в пакеті neuropro 0.25.
- •Розпізнавання образів у програмі емуляції нейронної мережі «numbers»
- •Класифікація даних на прикладі аналізу «ірисів фішера»
- •Поняття про приборно – комп’ютерні системи.
- •Коротка історична довідка.
- •Класифікація медичних приборно-комп’ютерних систем
- •Класифікація за функціональними можливостями
- •Класифікація за призначенням
- •Основні принципи побудови мпкс Структура мпкс.
- •Медичне забезпечення
- •Апаратне забезпечення мпк Деякі елементи обчислювальної техніки
- •Програмне забезпечення мпкс.
- •1. Підготовки дослідження.
- •2. Проведення дослідження.
- •3. Перегляду і редагування записів.
- •4. Обчислювального аналізу.
- •5. Оформлення висновку.
- •6. Роботи з архівом.
- •Системи для проведення функціональної діагностики. Системи для дослідження функцій кровообігу.
- •Комп’ютерна електрокардіографія
- •Комп’ютерна реографія.
- •Системи для дослідження органів дихання.
- •Системи для дослідження головного мозку
- •Комп’ютерна електроенцефалограма
- •Системи для ультразвукових досліджень
- •Комп’ютерна ехотомографія
- •Інші типи спеціалізованих систем
- •Методи обробки й аналізу медичних зображень.
- •Мпкс для рентгенівських досліджень
- •Мпкс для магнітно-резонансних досліджень.
- •Мпкс для радіонуклідних досліджень(рнд).
- •Багатофункціональні системи
- •Системи для проведення моніторингу
- •Специфіка моніторингових систем
- •Електрокардіографічний моніторинг
- •Системи управління лікувальним процесом.
- •Системи інтенсивної терапії.
- •Системи оберненого біологічного зв’язку.
- •Системи протезування та штучні органи.
- •Перспективи розвитку мпкс
- •Питання для самоконтролю
Ймовірнісна нейронна мережа в задачах класифікації.
Виходи мережі можна інтерпретувати, як оцінки імовірності приналежності елемента до певного класу. Ймовірнісна мережа (Probabilistic Neural Network – PNN) вчиться оцінювати функцію щільності імовірності, її вихідний сигнал розглядається як очікуване значення характеристики моделі у даній точці простору входів. Це значення пов’язано із щільністю імовірності загального розподілу вхідних і вихідних даних.
Задача оцінки щільності імовірності відноситься до області байєсовської статистики. Звичайна статистика по заданій моделі показує, яка імовірність того або іншого виходу (наприклад, на гральній кісті 6 очок буде випадати в середньому в одному випадку із шести). Байєсовська статистика інтерпретує по іншому: правильність моделі оцінюється по наявним достовірним даним, тобто дає можливість оцінювати щільність імовірності розподілу параметрів моделі по наявним даним. При вирішенні задачі класифікації можна оцінити щільність імовірності для кожного класу, порівняти між собою імовірності приналежності різним класам і вибрати найбільш ймовірний. Традиційний підхід до задачі полягає в тому, щоб побудувати оцінку для щільності імовірності за наявними даними. Звичайно при цьому передбачається, що щільність має деякий певний розподіл (найчастіше – що вона має нормальний розподіл). Після цього оцінюються параметри моделі.
Інший підхід до оцінки щільності імовірності заснований на ядерних оцінках. Можна міркувати так: той факт, що результат спостереження розташований в даній точці простору, свідчить про те, що в цій точці є деяка щільність імовірності. Кластери з близько лежачих точок указують на те, що у цьому місці щільність імовірності велика. Поблизу спостереження є більша довіра до рівня щільності, а по мірі віддалення від нього довіра зменшується і прямує до нуля. У методі «ядерних оцінок» у точці, що відповідає кожному спостереженню, розміщується деяка проста функція, потім усі вони додаються й в результаті отримується оцінка для загальної щільності імовірності. Найчастіше у якості «ядерних функцій» беруться гаусові функції (із формою колоколу). Якщо навчальних прикладів достатня кількість, то такий метод дає досить гарне наближення до істинної щільності імовірності.
Ця мережа має вхідний, радіальний (схований) і вихідний шари. Радіальні елементи схованого шару беруться по одному на кожне навчальне спостереження. Кожен з них представляє гаусову функцію с центром у цьому спостереженні. Кожному класові відповідає один вихідний елемент. Кожен такий елемент з’єднаний із усіма радіальними елементами, що відносяться до його класу, а із усіма іншими радіальними елементами він має нульове з’єднання. Таким чином, вихідний елемент просто додає відгуки всіх елементів, що належать до його класу. Значення вихідних сигналів виявляються пропорційними «ядерним оцінкам» імовірності приналежності відповідним класам, і пронормувавши них на одиницю, ми дістаємо остаточні оцінки імовірності приналежності класам.
Базова модель мережі може мати дві модифікації. У першому випадку ми припускаємо, що пропорції класів у навчальній множині відповідають їх пропорціям у всій досліджуваній популяції (або так званим апріорним ймовірностям). Наприклад, якщо серед усіх людей хворими є 2%, то в навчальній множині для мережі, що діагностує захворювання, хворих повинне бути теж 2%. Якщо ж апріорні імовірності будуть відрізнятися від пропорцій у навчальній вибірці, то мережа буде видавати неправильний результат. Це можна згодом врахувати (якщо стали відомими апріорні імовірності), вводячи поправочні коефіцієнти для різних класів.
Другий варіант модифікації заснований на наступній ідеї. Будь-яка оцінка, що видається мережею, ґрунтується на зашумленних даних і неминуче буде приводити до окремих помилок у класифікації (наприклад, у деяких хворих результати аналізів можуть бути цілком нормальними). Іноді буває доцільно вважати, що деякі види помилок обходяться «дорожче» інших (наприклад, якщо здорова людина буде діагностована як хвора, то це викличе зайві витрати на його обстеження, але не створить загрози для життя; якщо ж не буде виявлений дійсно хворий, о це може привести до смертельного результату). У такій ситуації ті імовірності, що видає мережа, варто помножити на коефіцієнти втрат, що відбиває відносну ціну помилок класифікації.
Найбільш важливі переваги розглянутих мереж полягають у тому, що вихідне значення має ймовірнісний зміст і тому його легше інтерпретувати), і у тім, що мережа швидко навчається. При навчанні такої мережі час витрачається практично тільки на те, щоб подавати їй на вхід навчальні спостереження, і мережа працює настільки швидко, наскільки це взагалі можливо.
Істотним недоліком таких мереж є їхній обсяг у порівнянні з MLP моделями, що вирішують аналогічні задачі. Нейронна мережа фактично вміщує в себе всі навчальні дані, тому вона вимагає багато пам’яті і може повільно працювати.
