- •Розділ 1. Основні поняття медичної інформатики. Комп’ютер у діяльності майбутнього лікаря
- •1.1. Основні поняття медичної інформатики
- •Інформація та її визначення
- •Носії повідомлень
- •Визначення кількості інформації
- •Представлення інформації в комп’ютері
- •Системи числення
- •Десяткова система числення
- •Двійкова (бінарна) система числення
- •Переведення числової інформації з десяткової системи числення в двійкову
- •Кодування нечислової інформації
- •Логічні елементи в комп’ютері
- •Предмет та об’єкт медичної інформатики
- •Медична інформація та її види
- •Інформація, дані, знання
- •Типи медичних знань.
- •Інформаційний медичний документ
- •Опис даних: якісні, порядкові та кількісні дані. Шкали вимірювання
- •Якісні дані. Шкала класифікації (номінальна).
- •Порядкові дані. Шкала порядку.
- •Кількісні дані. Шкала інтервалів і шкала відношень.
- •Медичні дані
- •Питання для самоконтролю
- •1.2. Передача інформації. Мережеві технології. Основи телемедицини Передача інформації, схема передачі інформації
- •Основні поняття комп’ютерних мереж
- •Комунікаційне обладнання
- •Комунікаційне програмне забезпечення
- •Класифікація комп’ютерних мереж
- •Локальні мережі
- •Глобальні мережі
- •Глобальна мережа Internet та її можливості
- •Виникнення глобальної мережі Internet.
- •Протоколи мережі Internet.
- •Ідентифікація комп’ютерів в мережі. Адресація в Internet.
- •Основні послуги Internet.
- •Робота з електронною поштою
- •Поштові адреси та структура електронного листа.
- •Робота з гіпертекстовими сторінками World Wide Web.
- •Пошук в Internet
- •Робота з файлами засобами ftp-сервера
- •Загальні алгоритми пошуку інформації в Internet .
- •Основи телемедицини
- •Технології, що застосовуються у телемедицині
- •Будова телемедичних систем. Засоби передачі інформації в телемедицині
- •Функції телемедичних центрів
- •Стандарти, які застосовуються в телемедицині.
- •Стандарт Health Level 7
- •Проблеми телемедицини
- •Питання для самоконтролю
- •1.3. Комп’ютерні дані: типи даних, обробка та управління. Основні концепції баз даних
- •Класифікація баз даних
- •Основні типи моделей даних
- •Ієрархічна модель даних.
- •Модель даних типу мережа.
- •Реляційна модель даних.
- •Класифікація сучасних систем керування базами даних
- •Мовні засоби систем керування базами даних
- •Майбутнє субд
- •Питання для самоконтролю
- •Розділ 2. Медичні дані. Методологія обробки та аналізу інформації.
- •2.1. Кодування та класифікація. Історія класифікації і кодування
- •Поняття класифікації
- •Двоосьова icpc .
- •Поняття кодування
- •Проблеми класифікації та кодування
- •Класифікаційні системи
- •Системи класифікації в Україні
- •Питання для самоконтролю
- •2.2. Аналіз біосигналів. Методи обробки біосигналів. Візуалізація медико-біологічних даних. Обробка та аналіз медичних зображень. Біосигнали та їх обробка.
- •Реєстрація, трансформація та класифікація сигналів
- •Біосигнали і нестаціонарні сигнали.
- •Типи сигналів.
- •Приклади застосування аналізу біосигналів
- •Поняття медичного зображення.
- •Формування медичних зображень
- •Медичне зображення як об’єкт медичної інформатики.
- •Методи отримання медичних зображень
- •Обробка медичних зображень.
- •Основні принципи обробки зображень.
- •Попередня обробка.
- •Зміна контрастності зображення.
- •Затемнення і видимість деталей зображення
- •Зменшення шуму.
- •Квантування рівня сірого
- •Відновлення зображень
- •Покращення зображень
- •Методика виявлення краю або контуру
- •Сегментація.
- •Стиснення зображення
- •Перетворення зображення
- •Повне перетворення
- •Розрахунок параметрів.
- •Інтерпретація зображень.
- •Проблеми обробки та аналізу зображень
- •Проблема візуалізації зображень.
- •Двовимірні томографічні зображення.
- •Тривимірне об’ємне зображення.
- •Способи двовимірної візуалізації.
- •Способи дійсної три вимірної візуалізації.
- •Застосування тривимірної візуалізації.
- •Сучасні тенденції обробки зображень
- •Обробка двовимірних та тривимірних медичних зображень. Обробка двовимірних медичних зображень
- •Обробка тривимірних медичних зображень
- •Питання для самоконтролю
- •2.4. Методи біостатистики. Сучасна технологія аналізу даних
- •Планування дослідження.
- •Підготовка даних до аналізу
- •Попередній аналіз даних
- •Вибір і реалізація методу аналізу
- •Закони розподілу дискретних випадкових величин Біноміальний розподіл (розподіл Бернуллі)
- •Розподіл Пуассона
- •Закони розподілу неперервних випадкових величин Нормальний закон розподілу (Гауса)
- •Розподіл
- •Розподіл Ст’юдента (Госсета)
- •Емпіричні закони розподілу випадкових величин
- •Оцінка параметрів розподілу та перевірка гіпотез Загальні поняття
- •Етапи перевірки гіпотез
- •Критерії перевірки гіпотез
- •Стійкість критеріїв
- •Послідовність операцій при виборі критерію
- •Постановка задачі
- •Визначення додаткових умов вибору критерію
- •Вибір конкретного критерію
- •Вимоги до вибірок
- •Критерій (критерій Пірсона)
- •Кореляційний аналіз
- •Регресійний аналіз
- •Тестові завдання для самоконтролю
- •Розділ 3. Медичні знання та прийняття рішень в медицині
- •3.1. Формалізація та алгоритмізація медичних задач. Основні поняття
- •Алгоритми та їх властивості.
- •Способи подання алгоритмів
- •Типи алгоритмів та їх структурні схеми Лінійні алгоритми
- •Циклічні алгоритми
- •Цикл-поки
- •Цикл-до
- •Питання для самоконтролю
- •3.2. Формальна логіка у вирішенні медико-біологічних задач. Основи логіки висловлень
- •Поняття висловлення
- •Множина значень висловлення
- •Алфавіт логіки висловлень
- •Логічні операції та таблиці істинності. Бінарні і унарні операції
- •Операція заперечення.
- •Операція кон’юнкції
- •Операція диз’юнкції
- •Операція імплікації
- •Операція еквівалентності
- •Діаграми Вена
- •Властивості логічних операцій
- •Основні логічні функції.
- •Логічна функція якщо
- •Способи подання логічних функцій
- •Питання для самоконтролю
- •3.3. Методи підтримки прийняття рішень. Стратегії отримання медичних знань Типи діагностичних і прогностичних технологій
- •Види лікарської логіки.
- •Детерміністична логіка
- •Табличні методи
- •Машинні технології
- •Логіка фазових інтервалів
- •Фазовий простір станів
- •Застосування ймовірнісної логіки в діагностиці
- •Основи теорії ймовірнісної діагностики
- •Розробка систем ймовірнісної діагностики
- •Приклад застосування систем ймовірнісної діагностики
- •Метод послідовного статистичного аналізу Вальда
- •Визначення й архітектура систем знань
- •Людина і комп’ютер
- •Експертні системи в медицині
- •Штучний інтелект.
- •Історія ес
- •Розробка експертних систем
- •База знань
- •Формальні моделі зображення знань
- •Продукційні моделі
- •Семантичні моделі
- •Модель типу фрейм
- •Характеристики експертних систем
- •Приклади застосування експертних систем
- •Тенденції розвитку систем знань
- •Питання для самоконтролю
- •3.4. Клінічні системи підтримки прийняття рішень. Засоби прогнозування. Моделювання медико-біологічних процесів . Поняття системи
- •Властивості систем
- •Структура систем
- •Загальна теорія систем. Системний підхід
- •Поняття моделі. Типи моделей
- •Типи моделей
- •Математична модель. Історія
- •Ступені складності математичної моделі
- •Ступені адекватності
- •Математичне моделювання
- •Етапи математичного моделювання
- •Обмеження і переваги методу математичного моделювання
- •Приклади математичних моделей.
- •1. Гемодинаміка судинного русла
- •2. Модель зміни концентрації лікарського препарату в крові пацієнта
- •3. Моделювання росту популяцій
- •57. Випадкові відхилення 58. Випадкові відхилення
- •4. Математична модель «хижак – жертва»
- •5. Моделювання клітинного росту
- •6. Математичне моделювання в імунології.
- •7. Моделювання епідемічних процесів
- •Питання для самоконтролю
- •3.5. Доказова медицина Доказова медицина. Принципи доказової медицини
- •Визначення доказовості
- •Аспекти доказової медицини
- •Умови ефективного функціонування доказової медицини
- •Алгоритм дій
- •Мета-аналіз
- •Види мета-аналізу
- •Переваги мета-аналізу
- •Проблеми мета-аналізу
- •Кокранівські бази даних
- •Принципи Кокранівського Співробітництва
- •Проблемні групи зі створення систематичних оглядів
- •Кокранівські робочі групи з методології оглядів
- •Кокранівські спеціалізовані групи
- •Кокранівські центри
- •Кокранівська мережа споживачів
- •Кокранівська електронна бібліотека
- •Кокранівська база даних систематичних оглядів
- •Кокранівський реєстр контрольованих випробувань
- •Прийняття оптимальних рішень в охороні здоров’я
- •Тенденції розвитку Кокранівського Співробітництва
- •Стислий довідник з доказової медицини
- •Принципи створення довідника
- •І. Систематичні огляди як джерело доказів.
- •Іі. Рандомізовані контрольовані випробування як джерела доказів
- •Особливості викладу матеріалу
- •Питання для самоконтролю
- •Розділ 4. Системи, направлені на пацієнтів, та інституційні інформаційні системи в охороні здоров’я
- •4.1. Типи інформаційних систем в галузі охорони здоров’я. Госпітальні інформаційні системи та їх розвиток. Вимоги до інформації
- •Основні аспекти інформатизації медичної діяльності
- •Загальна технологічна схема діагностично-лікувального процесу.
- •Етапи створення і основні характеристики міс
- •Класифікація медичних інформаційних систем
- •Медичні інформаційні системи базового рівня
- •Інформаційно довідкові системи.
- •Консультативно-діагностичні системи.
- •Арм лікаря.
- •Автоматизоване робоче місце лікаря діагноста
- •Медичні інформаційні системи рівня лікувально-профілактичного закладу
- •Інформаційні системи консультативних центрів.
- •Скрінінгові системи.
- •Інформаційні системи лікувально-профілактичної установи Особливості організації інформаційного середовища лікувально профілактичної установи
- •Основні типи даних
- •Інформаційні системи поліклінічного обслуговування.
- •Міс територіального і державного рівня
- •Інформаційне забезпечення міс
- •Госпітальні інформаційні системи
- •Архітектура гіс.
- •Автоматизовані робочі місця головного лікаря та його замісників.
- •Регістратура
- •Електронна медична карта (емк)
- •Стаціонар
- •Лабораторні дослідження.
- •Операційна
- •Облік лікарських засобів.
- •Питання для самоконтролю
- •4.2. Електронна медична картка. Ведення медичної документації за допомогою персонального комп’ютера.
- •Концепція побудови електронних медичних карток
- •Ступінь захисту інформації про пацієнтів
- •Система медичного документообігу закладів охорони здоров’я
- •Структура системи
- •Етапи документообігу
- •Питання для самоконтролю
- •4.3. Інформаційні ресурси системи охорони здоров’я
- •4.4. Етичні та правові принципи в системі охорони здоров’я Захист медичної інформації
- •Медична інформаційна система як об’єкт захисту
- •Проблеми організації захисту лікарської таємниці
- •Загрози інформації, що містить лікарську таємницю.
- •Проблеми впровадження комплексних систем захисту.
- •Вимоги до моделі процесів інформаційної безпеки.
- •Формування моделі інформаційної безпеки.
- •Питання для самоконтролю
- •Додатки Нейронні мережі.
- •Основні поняття
- •Моделі нейронних мереж Багатошаровий персептрон
- •Ймовірнісна нейронна мережа в задачах класифікації.
- •Узагальнено-регресійна нейронна мережа в задачах регресії
- •Карти Кохонена, що самоорганізуються
- •Лінійна мережа
- •Алгоритм побудови нейронних мереж Оцінка адекватності нейромережевих моделей
- •Методика побудови нейронної мережі в пакеті neuropro 0.25.
- •Розпізнавання образів у програмі емуляції нейронної мережі «numbers»
- •Класифікація даних на прикладі аналізу «ірисів фішера»
- •Поняття про приборно – комп’ютерні системи.
- •Коротка історична довідка.
- •Класифікація медичних приборно-комп’ютерних систем
- •Класифікація за функціональними можливостями
- •Класифікація за призначенням
- •Основні принципи побудови мпкс Структура мпкс.
- •Медичне забезпечення
- •Апаратне забезпечення мпк Деякі елементи обчислювальної техніки
- •Програмне забезпечення мпкс.
- •1. Підготовки дослідження.
- •2. Проведення дослідження.
- •3. Перегляду і редагування записів.
- •4. Обчислювального аналізу.
- •5. Оформлення висновку.
- •6. Роботи з архівом.
- •Системи для проведення функціональної діагностики. Системи для дослідження функцій кровообігу.
- •Комп’ютерна електрокардіографія
- •Комп’ютерна реографія.
- •Системи для дослідження органів дихання.
- •Системи для дослідження головного мозку
- •Комп’ютерна електроенцефалограма
- •Системи для ультразвукових досліджень
- •Комп’ютерна ехотомографія
- •Інші типи спеціалізованих систем
- •Методи обробки й аналізу медичних зображень.
- •Мпкс для рентгенівських досліджень
- •Мпкс для магнітно-резонансних досліджень.
- •Мпкс для радіонуклідних досліджень(рнд).
- •Багатофункціональні системи
- •Системи для проведення моніторингу
- •Специфіка моніторингових систем
- •Електрокардіографічний моніторинг
- •Системи управління лікувальним процесом.
- •Системи інтенсивної терапії.
- •Системи оберненого біологічного зв’язку.
- •Системи протезування та штучні органи.
- •Перспективи розвитку мпкс
- •Питання для самоконтролю
Питання для самоконтролю
1. Дайте визначення понять «секретність», «конфіденційність», «захист даних» та цілісності даних.
2. Поясніть поняття «безпека МІС».
3. Охарактеризуйте МІС з позиції захисту інформації.
4. Які основні проблеми виникають в процесі захисту інформації в МІС?
5. Перерахуйте найбільш розповсюджені шляхи витоку інформації.
6. Назвіть специфічні особливості створення системи захисту.
7. Назвіть основи або складові системи безпеки.
8. Які проблеми впровадження комплексних систем захисту МІС?
9. Які основні напрямки забезпечення безпеки інформаційних технологій виділяють?
10. З яких етапів складається процес створення системи захисту?
Додатки Нейронні мережі.
Прогрес у вирішенні проблем моделювання інтелектуальних систем, до яких відносяться і експертні, обумовлений застосуванням штучних нейронних мереж. Інтелектуальні системи на основі нейронних мереж дозволяють з успіхом вирішувати проблеми розпізнавання образів, прогнозування, оптимізації, асоціативної пам’яті і керування, тобто ті, де традиційні підходи не завжди мають успішне застосування. Це пов’язано з тим, що метод нейромережевого моделювання дозволяє вирішувати ряд задач у тих областях, де лінійні моделі не можуть бути використані в силу ряду об’єктивних причин. Особливо це стосується обробки даних медичних досліджень.
Як відомо організм людини представляє нелінійну систему і вирішення таких задач як класифікація, прогнозування станів, а також вибір оптимального методу лікування і профілактики захворювань неможливі із застосуванням лінійних математичних методів. Нейронні мережі здатні приймати рішення, ґрунтуючись на схованих закономірностях, що виявляються ними, у багатомірних даних. Відмітна властивість нейромереж й полягає в тому, що вони не програмуються і не використовують ніяких правил висновку для постановки діагнозу, а навчаються робити це на прикладах. У медицині знаходить застосування й інша особливість нейромереж – їхня здатність передбачати тимчасові послідовності. До теперішнього часу розроблений ряд нейромережевих систем фільтрації електрокардіограм, що дозволяють зменшувати нелінійний і нестаціонарний шум значно краще, ніж методи, що використовувалися раніше.
Незважаючи на значні успіхи в застосуванні нейронних мереж у медицині є ряд проблем з їх упровадженням. Це пов’язано в першу чергу з відсутністю у лікарів інформації про можливості нейронних мереж для вирішення медичних задач, а також доступних практичних посібників з їхнього застосування.
Основні поняття
Нейронні мережі – клас аналітичних методів, побудованих на (гіпотетичних) принципах навчання мислячих істот і функціонування мозку, що дозволяють прогнозувати значення деяких змінних у нових спостереженнях на основі результатів інших спостережень (для цих же або інших змінних) після проходження етапу так званого навчання на наявних даних. Найбільш часто нейронні мережі використовуються для вирішення наступних задач:
класифікація образів – вказівка на приналежність вхідного образа, представленого вектором ознак, одному або декільком попередньо визначеним класам;
кластеризація – класифікація образів при відсутності навчальної вибірки з мітками класів;
прогнозування – передбачення значення y(tn+1) при відомій послідовності y(t1), y(t2) … y(tn);
оптимізація – знаходження рішення, що задовольняє системі обмежень і максимізує або мінімізує цільову функцію. Пам’ять, що адресується за змістом (асоціативна пам’ять) – пам’ять, доступна при вказівці заданого змісту;
управління – розрахунок такого вхідного впливу на систему, за якого система іде по бажаній траєкторії.
Структурною основою нейронної мережі є формальний нейрон.
Н ейронні мережі виникли із спроб відтворити здатність біологічних систем навчатися, моделюючи низькорівневу структуру мозку. Для цього в основу нейромережвої моделі покладається елемент, який імітує у першому наближенні властивості біологічного нейрона – формальний нейрон (далі просто нейрон). В організмі людини нейрони це особливі клітини, здатні поширювати електрохімічні сигнали.
Рис. 83. Структура формального нейрона.
Нейрон має розгалужену структуру для введення інформації (дендрити), ядро і вихід, що розгалужується, (аксон). Будучи з’єднаними певним чином, нейрони утворюють нейронну мережу. Кожен нейрон характеризується певним поточним станом і має групу синапсів – односпрямованих вхідних зв’язків, з’єднаних з виходами інших нейронів, а також має аксон – вихідний зв’язок даного нейрона, за яким сигнал (порушення або гальмування) надходить на синапсы наступних нейронів.
Кожен синапс характеризується величиною синапсичного зв’язку або його вагою wi, що по фізичному змісту еквівалентна електричній провідності.
Поточний стан (рівень активації) нейрона визначається, як зважена сума його входів:
(1)
де множина сигналів, позначених x1, x2,…, xn, надходить на вхід нейрона, кожен сигнал збільшується на відповідну вагу w1, w2,…,wn,і формує рівень його активації – S. Вихід нейрона є функція рівня його активації:
(2)
При функціонуванні нейронних мереж виконується принцип паралельної обробки сигналів. Він досягається шляхом об’єднання великого числа нейронів у так звані шари і з’єднання певним чином нейронів різних шарів, а також, у деяких конфігураціях, і нейронів одного шару між собою, причому обробка взаємодії всіх нейронів ведеться послойно.
Я к приклад найпростішої нейронної мережі розглянемо одношаровий перcептрон з n нейронами у вхідному і трьома нейронами у вихідному шарі (рис. 75). Коли на n входів надходять якісь сигнали, вони проходять по синапсам на 3 вихідні нейрони. Ця система утворює єдиний шар нейронної мережі і видає три вихідних сигнали:
Рис. 84. Архітектура нейронної мережі з n нейронами у вхідному і трьома нейронами у вихідному шарі (одношаровий персептрон).
Очевидно, що усі вагові коефіцієнти синапсів одного шару нейронів можна звести в матрицю wj, кожен елемент якої wij задає величину синапсичного зв’язку i-го нейрона вхідного і j-го нейрона вихідного шарів (3).
(3)
Таким чином, процес, що відбувається в нейронній мережі, може бути записаний у матричній формі:
, (4)
де x і y – відповідно вхідний і вихідний вектори, f(v) – активаційна функція, що застосовується поэлементно до компонентів вектора v.
Вибір структури нейронної мережі здійснюється відповідно до особливостей і складності задачі. Для рішення деяких окремих типів задач вже існують оптимальні конфігурації. Якщо ж задача не може бути зведена до жодного з відомих типів, розробнику доводиться вирішувати складну проблему синтезу нової конфігурації.
Можлива така класифікація існуючих нейромереж. :
За типом вхідної інформації:
мережі, що аналізують двійкову інформацію;
мережі, що оперують з дійсними числами.
За методом навчання:
мережі, які необхідно навчити перед їхнім застосуванням;
мережі, що не потребують попереднього навчання, здатні само навчатися в процесі роботи.
За характером поширення інформації:
односпрямовані, у яких інформація поширюється тільки в одному напрямку від одного шару до іншого;
рекурентні мережі, у яких вихідний сигнал елемента може знову надходити на цей елемент і інші елементи мережі цього або попереднього шарів як вхідний сигнал.
За способом перетворення вхідної інформації:
автоасоціативні;
гетероасоціативні.
Р озвиваючи далі питання про можливу класифікацію нейронних мереж, важливо відзначити існування бінарних і аналогових мереж. Перші з них оперують із двійковими сигналами, і вихід кожного нейрона може приймати тільки два значення: логічний нуль («загальмований» стан) і логічна одиниця («збуджений» стан). Ще одна класифікація поділяє нейронні мережі на синхронні й асинхронні. У першому випадку у кожний момент часу свій стан змінює лише один нейрон. У другому – стан змінюється відразу в цілої групи нейронів, як правило, у всього шару.
Рис. 85. Архітектура нейронної мережі з односпрямованим поширенням сигналу – двошаровий персептрон.
Мережі також можна класифікувати за числом шарів. На малюнку 3 представлений двошаровий персептрон, отриманий з персептрона з малюнка 3 шляхом додавання другого шару, що складається з двох нейронів.
Якщо розглядати роботу нейронних мереж, що вирішують задачу класифікації образів, то загалом їхня робота зводиться до класифікації (узагальненню) вхідних сигналів, що належать n-мірному гіперпросторові, по деякому числу класів. З математичної точки зору це відбувається шляхом розбивки гіперпростору гіперплощинами (запис для випадку одношарового персептрона)
, (5)
де k=1...m – номер класу.
Кожна отримана область є областю визначення окремого класу. Число таких класів для однієї нейронної мережі персептронного типу не перевищує 2m, де m – число виходів мережі. Однак не усі з них можуть бути розподілені даною нейронною мережею.
Наприклад, одношаровий персептрон, що складається з одного нейрона з двома входами, не здатний розділити площиною (двовимірний гіперпростір) на дві напівплощини так, щоб здійснити класифікацію вхідних сигналів по класах A і B у випадку, представленому в таблиці 31 – «задача АБО, що не розділяється».
Таблиця 31.
x1 x2 |
0 |
1 |
0 |
А |
У |
1 |
У |
А |
Рівняння мережі для цього випадку
(6)
є рівнянням прямій (одномірної гіперплощини), що ні при яких умовах не може розділити площину так, щоб точки з безлічі вхідних сигналів, що належать різним класам, виявилися по різні сторони від прямої.