Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОЖЕ-спектроскопия.docx
Скачиваний:
10
Добавлен:
26.08.2019
Размер:
77.84 Кб
Скачать

1. Физические основы электронной оже-спектроскопии

Метод электронной оже-спектроскопии (ЭОС) в настоящее время является одним из самых распространенных методов исследования элементного состава поверхности и границ раздела твердых тел. В основе ЭОС лежит оже-эффект, который был открыт в 1925 г. Пьером Оже. Оже-эффект является следствием ионизации одной из внутренних оболочек атома под действием первичного электронного пучка. 

Рис. 1. Схема генерации оже-электрона.

На рис.1 показана схема оже-процесса для атома с полностью заполненными энергетическими уровнями и валентной зоной. Энергия электронов в атоме отсчитывается от уровня Ферми EF; EV и EC - энергии потолка валентной зоны и дна зоны проводимости, φ - работа выхода электрона. Первичный электрон с энергией EP создает вакансию на уровне EK атома. Образовавшаяся вакансия через время τ ~ 10-14...10-16 c заполняется электроном с какого-либо верхнего уровня (в примере на рис.1 - с уровня L1. Избыток энергии Ek-EL1 может освободиться в виде характеристического рентгеновского излучения с энергией кванта hυ = Ek- EL1.

Оже-процесс является альтернативным излучению фотона, избыточная энергия в этом случае передается третьему электрону, находящемуся, например, на уровне L2. Этот электрон испускается в вакуум с энергией:

                           (1)

и регистрируется как оже-электрон. Слагаемое U в формуле (1) учитывает, что в конечном состоянии атом оказывается дважды ионизованным в результате образования вакансий на уровнях L1 и L2. Он учитывает увеличение энергии связи L2-электрона, когда удален L1-электрон и L1-электрона при наличии вакансии на уровне L2. Точное вычисление слагаемого U(L1,L2) затруднено, однако часто используют эмпирическое соотношение, достаточно хорошо согласующееся с экспериментальными результатами:

      (2)     

, где Z - атомный номер элемента.

Оже-переход, представленный на рис.1, обозначают как KL1L2. Первым записывается обозначение уровня, ионизованного первичным электроном, затем уровня, на котором образовалась вторичная вакансия, и далее уровня, с которого произошло испускание оже-электрона. Электроны, участвующие в оже-процессе могут находиться и на одном и том же уровне, например, KL1L1, L1L2L2 т. Д. Такие процессы называются переходами Костера-Кронига. Если оже-электрон испускается из валентной зоны, то такой оже-процесс обозначается, например, как KL1V, KVV и т. д. В первом случае в оже-процессе участвует один электрон из валентной зоны, во втором - два.

Для оже-процесса необходимо наличие в атоме, по крайней мере трех электронов. Поэтому оже-эффект наблюдается у всех элементов, начиная с лития (Z = 3). Для элементов, находящихся в начале периодической системы элементов (Z 14наиболее характерны KLL-переходы, для элементов с 14 < Z 40 - переходы LMM, а для элементов с 40 < Z переходы Вероятность выхода оже-электрона зависит от порядкового номера элемента в периодической системе элементов. Для легких элементов она составляет приблизительно 95%, для элементов с Z > 70 - не превышает 10%. Для K-уровня мышьяка (Z = 33) вероятности выхода оже-электронов и испускания рентгеновских фотонов равны.

Из соотношения (1) следует, что энергия оже-электрона определяется энергиями связи соответствующих атомных уровней данного элемента. Таким образом, для каждого элемента существует определенный, характерный только для этого элемента, набор энергий оже-электронов. Этот факт служит основой качественного элементного анализа поверхности методом электронной оже-спектроскопии. По характерному набору пиков в энергетическом спектре оже-электронов идентифицируют элементный состав исследуемого вещества. Для идентификации элементов используют атласы оже-спектров, такие например, как [1], в котором приведены оже спектры чистых элементов и некоторых соединений, измеренные в стандартных условиях.

Рис. 2. Универсальная кривая зависимости длины свободного пробега электронов l от энергии E.

О бычно энергии эмиттированных оже-электронов лежат впределах 20 эВ. Эти значения сравнимы с энергиями связи электронов в атомах, поэтому оже-электроны испытывают сильное неупругое рассеяние при движении от точки ионизации к наружной поверхности. Очевидно, что только те электроны, которые возбуждены вблизи поверхности на расстоянии меньшем, чем средняя длина свободного пробега, могут выйти из твердого тела без потерь и вносить вклад в соответствующий структурный оже-пик. Электроны, которые выходят с больших глубин, испытывают неупругие столкновения, покидают твердое тело с меньшей энергией и дают вклад в бесструктурный фон в спектре вторичных электронов. Таким образом, глубина анализируемого слоя поверхности в методе электронной оже-спектроскопии определяется средней глубиной выхода электронов с данной энергией. Результаты экспериментов свидетельствуют [2], что средняя длина свободного пробега имеет минимум, расположенный вблизи 50эВ и до некоторой степени не зависит от вещества, в котором движутся электроны. Как видно из графика на рис.2 глубина анализируемого слоя для всех значений энергий оже-электронов не превышает 20 A. Этим обусловлена высокая поверхностная чувствительность метода.

         Минимальная концентрация примесей, которую можно обнаружить с помощью ЭОС, составляет около одной тысячной монослоя [3].