
- •Севастопольский институт ядерной энергии и промышленности
- •Основы теории ядерных реакторов Курс для эксплуатационного персонала аэс
- •Содержание
- •Перечень сокращений
- •Тема 1.
- •1.1. Строение вещества
- •1.2. Строение и характеристики атомов
- •Атомная теория раскрывает физический смысл этих характеристик в следующих основных положениях:
- •1.3. Строение ядер и свойства ядерных сил
- •1.4. Энергия связи и устойчивость ядер атомов
- •1.4.5. Энергия связи, приходящаяся на один нуклон ядра
- •1.5. Закономерность и характеристики радиоактивного распада
- •Тема 2 нейтронные ядерные реакции
- •2.2. Особенности реакции деления и их практическое значение
- •2.3. Основные характеристики нейтронных полей
- •2.4. Скорости нейтронных реакций и их характеристики
- •Тема 3 критичность реактора и условия её реализации
- •3.1. Условия осуществления критичности реактора
- •3.1.2. Эффективный коэффициент размножения и реактивность реактора
- •3.2. Нейтронный цикл в тепловом ядерном реакторе.
- •3.2.2. Нейтронный цикл и характеристики его физических процессов
- •4.1. Ядерное топливо.
- •4.2. Замедлитель.
- •4.3. Теплоноситель
- •4.4. Параметры структуры активных зон гетерогенных эяр.
- •Тема 5 замедление нейтронов в реакторе и его размножающие свойства
- •5.1. Общие начальные рассуждения
- •Вероятность избежания утечки замедляющихся нейтронов - это доля нейтронов, избежавших утечки из активной зоны при замедлении, от всех нейтронов поколения, начавших процесс замедления в активной зоне.
- •5.2. Характеристики замедляющих свойств веществ
- •5.3. Возраст нейтронов в среде
- •Величину, обратную величине транспортного смещения
- •Возраст нейтронов с энергией е - это шестая часть среднего квадрата пространственного смещения нейтрона в среде при замедлении от начальной энергии Ео до данной энергии е.
- •5.4. Уравнение возраста Ферми и его решение
- •5.5. Вероятность избежания утечки замедляющихся нейтронов
- •Спектр замедляющихся нейтронов Ферми в гомогенной непоглощающей среде
- •5.7. Время замедления нейтронов в среде активной зоны
- •Краткие выводы
- •Тема 6. Диффузия и размножающие свойства теплового реактора
- •6.1. Закон диффузии тепловых нейтронов и длина диффузии
- •6.2. Скорость утечки тепловых нейтронов из единичного объёма активной зоны
- •6.3. Волновое уравнение, уравнение критичности реактора и величина вероятности избежания утечки тепловых нейтронов
- •6.4. Геометрический параметр цилиндрического реактора без отражателя и поле тепловых нейтронов в нём
- •Краткие выводы
- •7.1. Константа
- •7.2. Коэффициент использования тепловых нейтронов
- •7.2.6. Зависимости величины от определяющих её факторов.
- •Краткие выводы
- •Тема 8 уран-238 и размножающие свойства реактора
- •8.1. Коэффициент размножения на быстрых нейтронах
- •8.1.2. Величина в цилиндрическом блоке из природного металлического урана.
- •8.2. Вероятность избежания резонансного захвата
- •Тема 9 критические размеры и нейтронное поле в реакторе с отражателем
- •9.1. Отражатель теплового реактора
- •9.2. Эффективная добавка (э)
- •9.3. Геометрический параметр и поле тепловых нейтронов в гомогенной цилиндрической активной зоне с отражателем
- •9.4. Особенности нейтронного поля в гетерогенном реакторе
- •9.5. Показатели неравномерности нейтронного поля в реакторах
- •Тема 10 температурные эффекты реактивности реактора
- •Температурный эффект и температурный коэффициент реактивности
- •Температурный эффект реактивности реактора
- •Три характерных для ввр типа кривых тэр
- •Температурный коэффициент реактивности реактора (ткр)
- •Условие устойчивости работы энергетического реактора на мощности
- •10.3. Чем определяется форма кривой тэр реактора?
- •Условные составляющие тэр и ткр
- •Мощностной тэр (ткр) реактора
- •Тэр и ткр теплоносителя
- •Раздел 3 кинетика реактора
- •Тема 11 элементарная кинетика теплового реактора
- •10.1. Элементарное уравнение кинетики реактора
- •Среднее время жизни поколения нейтронов в тепловом реакторе
- •Следовательно, время жизни запаздывающих нейтронов любой группы
- •11.3. Период реактора, период удвоения мощности и их взаимосвязь
- •Тема 12 кинетика реактора с учётом запаздывающих нейтронов
- •Система дифференциальных уравнений кинетики реактора с учётом
- •Уравнение обратных часов.
- •Переходные процессы при сообщении реактору отрицательной
- •Переходные процессы при сообщении реактору положительных реактивностей
- •Особенности переходных процессов при сообщении реактору малых и больших реактивностей
- •Как управляют реактором на малых уровнях мощности?
- •Тема 13 основы кинетики подкритического реактора при его пуске
- •Источники нейтронов в подкритическом реакторе
- •Что это за источники?
- •Устанавливающаяся в подкритическом реакторе плотность нейтронов
- •Переходные процессы при изменениях степени подкритичности реактора
- •Учитывая, что отношение начальной и конечной плотностей нейтронов
- •Время практического установления подкритической плотности
- •Процедура ступенчатого пуска и ядерная безопасность реактора
- •Краткие выводы
- •Раздел 4. Изменения запаса реактивности при работе реактора
- •Тема 14.
- •Понятия общего и оперативного запаса
- •Тема 15 уменьшение запаса реактивности с выгоранием ядерного топлива
- •15.2. Энерговыработка реактора
- •15.4. Основные характеристики выгорания
- •Тема 16 уменьшение запаса реактивности за счёт шлакования ядерного топлива
- •Кинетика роста потерь запаса реактивности за счёт шлакования
- •Тема 17 рост запаса реактивности с воспроизводством ядерного топлива
- •17.2. Система дифференциальных уравнений воспроизводства плутония-239
- •Рост запаса реактивности с воспроизводством плутония-239.
- •17.4. Коэффициент воспроизводства ядерного топлива
- •Тема 18 использование выгорающих поглотителей
- •18.1. Характеристики наиболее распространённых выгорающих поглотителей
- •18.2. Факторы, определяющие скорость выгорания вп
- •18.4. Кривая энерговыработки активной зоны реактора
- •Тема 19 отравление реактора ксеноном
- •Отравления реактора ксеноном
- •Стационарное отравление реактора ксеноном.
- •19.3. Переотравление после останова реактора («йодная яма»)
- •Переотравления реактора ксеноном после изменения уровня мощности
- •19.5. Расчёт изменений потерь реактивности за счёт переотравлений реактора.
- •Тема 20 отравления реактора самарием-149
- •20.1. Схема образования-убыли 149Sm и дифференциальные уравнения отравления реактора самарием
- •20.1. Схема образования и убыли самария-149 и сопутствующих продуктов деления и их распада
- •20.2. Потери реактивности при стационарном отравлении реактора самарием
- •20.3. Закономерность роста потерь реактивности от отравления самарием до выхода реактора на стационарный уровень отравления.
- •20.4. Нестационарное переотравление реактора самарием после останова («прометиевый провал»)
- •20.5. Переотравление самарием после пуска длительно стоявшего реактора
- •20.6. Нестационарное переотравление реактора самарием после перевода реактора на более высокий или более низкий уровень мощности
- •Раздел 5.
- •Действие вводимого в активную зону стержня-поглотителя
- •Характеристика положения стержня-поглотителя в активной зоне
- •Понятия об интегральной и дифференциальной эффективности
- •Эффективный радиус стержня-поглотителя
- •Физический вес центрального стержня-поглотителя полной длины
- •21.6. Физический вес нецентрального подвижного поглотителя
- •Характеристики поглотителей – кривые интегральной и дифференциальной эффективности
- •Изменение реактивности реактора при перемещении стержня
- •Особенности характеристик укороченных поглотителей
- •Интерференция подвижных стержней-поглотителей
- •21.11. Простейшие методы градуировки подвижных поглотителей
- •Тема 22 борное регулирование ввэр
- •22.1. Сущность борного регулирования
- •22.2. Характер изменения концентрации борной кислоты в первом контуре
- •Эффективность борной кислоты
- •Факторы, определяющие величину дифференциальной эффективности борной кислоты
- •Тема 23 расчётное обеспечение ядерной безопасности ввэр при его эксплуатации
- •Расчёт пусковой критической концентрации борной кислоты
- •Расчёт предельно допустимого расхода подпитки первого контура чистым дистиллатом при пуске ввэр
- •Время снижения концентрации борной кислоты до заданной величины
- •Расчёт безопасного значения стояночной концентрации борной кислоты
- •23.5. Расчёт времени подпитки первого контура концентрированным раствором борной кислоты до достижения безопасной стояночной концентрации
- •Литература
1.4. Энергия связи и устойчивость ядер атомов
1.4.1. Масса (m) и энергия (Е) - две формы существования материи, пропорционально взаимосвязанные между собой соотношением А.Эйнштейна
Е = mc2, (1.5)
где с - скорость света в вакууме (с = 2.997924 .108 м/с).
Следовательно, 1 кг массы вещества обладает полной энергией
Е = 1 .(3 .108)2 = 9 .1016 Дж = 2.5 .1010 кВт .час
(т.к. 1 кВт .час = 3.6 .106 Дж).
1.4.2. Так как 1 а.е.м. соответствует в единицах СИ массе 1.66056 .10-27 кг, то в размерности системы СИ полная энергия 1 а.е.м. вещества равна:
Е1аем = 1.66056 .10-27(3 .108)2 = 1.4924 .1010 Дж.
В ядерной физике энергии частиц принято измерять в электронВольтах (эВ).
1 эВ - это энергия, приобретаемая электроном при прохождении ускоряющей разности потенциалов в 1 В.
Соотношение между упомянутыми единицами энергии:
1 эВ = 1.6022 .10-19 Дж или 1 Дж = 6.2414 .1018 эВ.
Следовательно, энергетический эквивалент 1 а.е.м. вещества
Е1аем = 9.315 .108 эВ = 931.5 МэВ
1.4.3. Сумма масс покоя отдельных свободных нуклонов, составляющих ядро, несколько больше массы покоя ядра, так как нуклоны в ядре связаны между собой ядерными силами притяжения, и, поскольку для осуществления этой связи необходима энергия (которой неоткуда взяться, кроме как из самих нуклонов), на эту связь нуклонов при образовании ядра при их сближении должна каким-то образом расходоваться часть массы самих нуклонов.
Разница масс покоя составляющих ядро нуклонов и массы покоя ядра называется избытком (или дефектом) масс и обозначается m.
Таким образом, в общем случае избыток массы ядра с массовым числом A и числом протонов в нём z найдётся как
m = zmp + (A - z)mn - Mя (1.6)
1.4.4. Энергия, потребная для разделения ядра на составляющие его нуклоны, называется энергией связи ядра. Разумеется, эта энергия численно равна энергии, затраченной при создании ядра из отдельных нуклонов, а потому в соответствии с законом А.Эйнштейна она должна равняться избытку (дефекту) массы:
Есв= m .c2 = [zmp + (A - z).mn - Mя] с2. (1.7)
1.4.5. Энергия связи, приходящаяся на один нуклон ядра
св = Eсв / A, (1.8)
называется удельной энергией связи. Эта величина является средней характеристикой ядерных сил, стягивающих нуклоны в ядро.
Благодаря точному измерению масс ядер и составляющих их нуклонов стало возможным точно проанализировать характер изменения св в созданных Природой устойчивых ядрах различных масс. Представление о результатах такого анализа дает график рис.1.1., из которого следует, что при малых значениях массовых чисел ядер величина удельной энергии связи с ростом A резко увеличивается, достигая максимума при A = 50 60 а.е.м., а при дальнейшем увеличении A - плавно уменьшается.
МэВ/нукл.
8
7
6
5
3
2
1
0
50 100 150 200 А, а.е.м. 250
Рис.1.1. Величины удельной энергии связи нуклонов в ядрах
устойчивых атомов различных атомных масс.
1.4.6. Из характера зависимости св(A) следуют две принципиальные возможности получения ядерной энергии:
а) СИНТЕЗ лёгких нуклидов, например, дейтерия 2D1 по схеме:
2D1 + 2D1 4He2
У дейтерия св = 1.11 МэВ/нуклон, следовательно, у двух ядер дейтерия, участвующих в процессе синтеза, суммарная энергия связи
Есв = 2 .1.11 + 2 .1.11 = 4.44 МэВ.
У продукта синтеза - гелия - св = 7.07 МэВ/нуклон, следовательно, энергия связи четырёх его нуклонов
Есв = 4 .7.07 = 28.28 МэВ
Разница суммарных энергий связи гелия и двух ядер дейтерия будет
Есв = 28.28 - 4.44 = 23.84 МэВ,
и эта энергия высвободится при синтезе ядра гелия из двух ядер дейтерия.
б) ДЕЛЕНИЕ ядер тяжёлых элементов, например, ядра 235U:
235U 139La + 96Mo
(одна характерная из множества возможных схем деления 235U).
У лантана св = 8.4 МэВ/нуклон, у молибдена св = 8.5 МэВ/нуклон, следовательно, суммарная энергия связи этих двух осколков деления
Есв = 8.4 .139 + 8.5 .96 = 1983.6 МэВ
У урана св = 7.6 МэВ/нуклон, следовательно, суммарная энергия связи нуклонов в нём Есв = 7.6 .235 = 1786.0 МэВ.
Разница энергий связи осколков деления урана и самого ядра урана
Eсв = 1983.6 - 1786.0 = 197.6 МэВ,
и эта энергия высвободится при делении ядра урана-235 на эту пару осколков.
1.4.7. Устойчивость нуклидов (то есть их способность к длительному существованию без изменений структуры и характеристик) должна определяться их массой A и зарядом z. Исследования стабильных ядер показали, что устойчивость ядер зависит от величины параметра (A-z)/z, то eсть от соотношения чисел нейтронов и протонов в ядре. Диаграмма устойчивости (см. рис.1.2), которая как раз и иллюстрирует величину этого соотношения в зависимости от массового числа нуклидов, наглядно свидетельствует о том, что:
1.5
1.0
0 50 100 150 200 250 А, а.е.м
Рис.1.2. Нейтронно-протонное отношение в устойчивых ядрах различных масс.
а) в ядрах лёгких элементов (с атомной массой до 20 а.е.м.) нейтронно-протонное отношение приблизительно равно 1, то есть в лёгких устойчивых ядрах содержится приблизительно одинаковое число протонов и нейтронов;
б) с дальнейшим ростом атомной массы нуклидов А область устойчивости смещается в область больших нейтронно-протонных отношений и достигает при больших значениях А величины 1.58.
Из последнего свойства устойчивых нуклидов следует важный практический вывод: при делении тяжёлых ядер образующиеся осколки деления - неустойчивы (то есть радиоактивны) по причине пересыщенности их избыточными для их устойчивости нейтронами. Для того, чтобы образовавшийся при делении осколок стал устойчивым (или, по крайней мере, приблизился к устойчивому состоянию), он должен каким-то образом сбросить, испустить из своего состава избыточные для устойчивости нейтроны. Что и наблюдается в действительности.
Испускание свободных нейтронов при делении тяжёлых ядер, имеющее решающее значение для осуществления самоподдерживающейся цепной ядерной реакции деления, обусловлено именно этим фактом.
1.4.8. На устойчивость ядер сильное влияние оказывает чётность или нечётность чисел протонов и нейтронов в них. Из всех природных стабильных ядер:
- 167 являются чётно-чётными (то есть содержащими чётное число протонов и чётное число нейтронов);
- 55 - являются чётно-нечётными (с чётным числом протонов z и нечётным числом нейтронов A - z);
- 53 - являются нечётно-чётными (с нечётным числом протонов и чётным числом нейтронов);
- и лишь 4 являются нечётно-нечётными, и это все ядра лёгких элементов (2Н1, 6Li3, 10В5 и 14N7).
Более высокую устойчивость чётно-чётных ядер объясняют природной склонностью протонов и нейтронов стягиваться в ядре парами с противоположными спинами.
1.4.9. Одинаковость плотностей нуклонов в ядрах, плотности ядерного вещества, а также одинаковость среднего расстояния между соседними нуклонами в стабильных ядрах (см.п.1.3.9) позволили на основе аналогии ядерной структуры и несжимаемой жидкости построить капельную модель ядра атома и на её основе получить полуэмпирическую формулу для величины энергии связи - формулу Вайцзеккера:
Eсв= A - A2/3 - z2/A1/3 - (A/2 -z)2/A + , (1.4.5)
где:
- A - энергия связи ядра массой А в предположении, что все нуклоны равноценны и каждый из них взаимодействует только с ближайшими к нему соседями (подобно вандерваальсовому взаимодействию молекул в капле несжимаемой жидкости); величина коэффициента = 15.56 МэВ установлена экспериментально;
- E1 = A2/3 - поправка на то, что находящиеся на поверхности ядра нуклоны связаны с соседями слабее, чем нуклоны внутри ядра (подобно поверхностным молекулам в капле воды); коэффициент = 17.23 МэВ;
- E2 = z2/A1/3 - вторая поправка на ослабление ядерных сил притяжения за счёт наличия кулоновского отталкивания протонов в ядре; величина эмпирического коэффициента = 0.71 МэВ;
- E3 = (A/2 - z)2/A - третья поправка на ослабление энергии связи вследствие отклонения протонно-нейтронного отношения от единицы, называемая поправкой на протонно-нейтронную асимметрию; величина коэффициента = 93.46 МэВ;
- величина четвёртой поправки - поправки на чётность - равна:
+ - для чётно-чётных ядер;
0 - для ядер с нечётными массовыми числами A;
- - для нечётно-нечётных ядер;
абсолютная величина этой поправки вычисляется по формуле:
= kA-3/4, где k = 34 МэВ.
1.4.10. Энергия связи ядра - по сути своей - энергия потенциальная. Стабильное ядро (как и всё стабильное в Природе) должно обладать минимумом потенциальной энергии. Энергетическое состояние ядра с минимумом его потенциальной энергии, благодаря чему оно длительно стабильно, называется основным состоянием.
Привнесение в стабильное ядро извне дополнительной энергии сверх уровня энергии основного состояния обязательно выводит ядро из устойчивого состояния, делает его нестабильным (или возбуждённым, радиоактивным).
1.4.11. Реализуя своё природное стремление к устойчивости, возбуждённое ядро стремится "скатиться" к уровню основного состояния путём сбрасывания избытка энергии сверх уровня устойчивости с излучением микрочастиц из своего состава или жёсткого гамма-излучения. Этот физический процесс называется радиоактивным распадом ядра.