
- •Севастопольский институт ядерной энергии и промышленности
- •Основы теории ядерных реакторов Курс для эксплуатационного персонала аэс
- •Содержание
- •Перечень сокращений
- •Тема 1.
- •1.1. Строение вещества
- •1.2. Строение и характеристики атомов
- •Атомная теория раскрывает физический смысл этих характеристик в следующих основных положениях:
- •1.3. Строение ядер и свойства ядерных сил
- •1.4. Энергия связи и устойчивость ядер атомов
- •1.4.5. Энергия связи, приходящаяся на один нуклон ядра
- •1.5. Закономерность и характеристики радиоактивного распада
- •Тема 2 нейтронные ядерные реакции
- •2.2. Особенности реакции деления и их практическое значение
- •2.3. Основные характеристики нейтронных полей
- •2.4. Скорости нейтронных реакций и их характеристики
- •Тема 3 критичность реактора и условия её реализации
- •3.1. Условия осуществления критичности реактора
- •3.1.2. Эффективный коэффициент размножения и реактивность реактора
- •3.2. Нейтронный цикл в тепловом ядерном реакторе.
- •3.2.2. Нейтронный цикл и характеристики его физических процессов
- •4.1. Ядерное топливо.
- •4.2. Замедлитель.
- •4.3. Теплоноситель
- •4.4. Параметры структуры активных зон гетерогенных эяр.
- •Тема 5 замедление нейтронов в реакторе и его размножающие свойства
- •5.1. Общие начальные рассуждения
- •Вероятность избежания утечки замедляющихся нейтронов - это доля нейтронов, избежавших утечки из активной зоны при замедлении, от всех нейтронов поколения, начавших процесс замедления в активной зоне.
- •5.2. Характеристики замедляющих свойств веществ
- •5.3. Возраст нейтронов в среде
- •Величину, обратную величине транспортного смещения
- •Возраст нейтронов с энергией е - это шестая часть среднего квадрата пространственного смещения нейтрона в среде при замедлении от начальной энергии Ео до данной энергии е.
- •5.4. Уравнение возраста Ферми и его решение
- •5.5. Вероятность избежания утечки замедляющихся нейтронов
- •Спектр замедляющихся нейтронов Ферми в гомогенной непоглощающей среде
- •5.7. Время замедления нейтронов в среде активной зоны
- •Краткие выводы
- •Тема 6. Диффузия и размножающие свойства теплового реактора
- •6.1. Закон диффузии тепловых нейтронов и длина диффузии
- •6.2. Скорость утечки тепловых нейтронов из единичного объёма активной зоны
- •6.3. Волновое уравнение, уравнение критичности реактора и величина вероятности избежания утечки тепловых нейтронов
- •6.4. Геометрический параметр цилиндрического реактора без отражателя и поле тепловых нейтронов в нём
- •Краткие выводы
- •7.1. Константа
- •7.2. Коэффициент использования тепловых нейтронов
- •7.2.6. Зависимости величины от определяющих её факторов.
- •Краткие выводы
- •Тема 8 уран-238 и размножающие свойства реактора
- •8.1. Коэффициент размножения на быстрых нейтронах
- •8.1.2. Величина в цилиндрическом блоке из природного металлического урана.
- •8.2. Вероятность избежания резонансного захвата
- •Тема 9 критические размеры и нейтронное поле в реакторе с отражателем
- •9.1. Отражатель теплового реактора
- •9.2. Эффективная добавка (э)
- •9.3. Геометрический параметр и поле тепловых нейтронов в гомогенной цилиндрической активной зоне с отражателем
- •9.4. Особенности нейтронного поля в гетерогенном реакторе
- •9.5. Показатели неравномерности нейтронного поля в реакторах
- •Тема 10 температурные эффекты реактивности реактора
- •Температурный эффект и температурный коэффициент реактивности
- •Температурный эффект реактивности реактора
- •Три характерных для ввр типа кривых тэр
- •Температурный коэффициент реактивности реактора (ткр)
- •Условие устойчивости работы энергетического реактора на мощности
- •10.3. Чем определяется форма кривой тэр реактора?
- •Условные составляющие тэр и ткр
- •Мощностной тэр (ткр) реактора
- •Тэр и ткр теплоносителя
- •Раздел 3 кинетика реактора
- •Тема 11 элементарная кинетика теплового реактора
- •10.1. Элементарное уравнение кинетики реактора
- •Среднее время жизни поколения нейтронов в тепловом реакторе
- •Следовательно, время жизни запаздывающих нейтронов любой группы
- •11.3. Период реактора, период удвоения мощности и их взаимосвязь
- •Тема 12 кинетика реактора с учётом запаздывающих нейтронов
- •Система дифференциальных уравнений кинетики реактора с учётом
- •Уравнение обратных часов.
- •Переходные процессы при сообщении реактору отрицательной
- •Переходные процессы при сообщении реактору положительных реактивностей
- •Особенности переходных процессов при сообщении реактору малых и больших реактивностей
- •Как управляют реактором на малых уровнях мощности?
- •Тема 13 основы кинетики подкритического реактора при его пуске
- •Источники нейтронов в подкритическом реакторе
- •Что это за источники?
- •Устанавливающаяся в подкритическом реакторе плотность нейтронов
- •Переходные процессы при изменениях степени подкритичности реактора
- •Учитывая, что отношение начальной и конечной плотностей нейтронов
- •Время практического установления подкритической плотности
- •Процедура ступенчатого пуска и ядерная безопасность реактора
- •Краткие выводы
- •Раздел 4. Изменения запаса реактивности при работе реактора
- •Тема 14.
- •Понятия общего и оперативного запаса
- •Тема 15 уменьшение запаса реактивности с выгоранием ядерного топлива
- •15.2. Энерговыработка реактора
- •15.4. Основные характеристики выгорания
- •Тема 16 уменьшение запаса реактивности за счёт шлакования ядерного топлива
- •Кинетика роста потерь запаса реактивности за счёт шлакования
- •Тема 17 рост запаса реактивности с воспроизводством ядерного топлива
- •17.2. Система дифференциальных уравнений воспроизводства плутония-239
- •Рост запаса реактивности с воспроизводством плутония-239.
- •17.4. Коэффициент воспроизводства ядерного топлива
- •Тема 18 использование выгорающих поглотителей
- •18.1. Характеристики наиболее распространённых выгорающих поглотителей
- •18.2. Факторы, определяющие скорость выгорания вп
- •18.4. Кривая энерговыработки активной зоны реактора
- •Тема 19 отравление реактора ксеноном
- •Отравления реактора ксеноном
- •Стационарное отравление реактора ксеноном.
- •19.3. Переотравление после останова реактора («йодная яма»)
- •Переотравления реактора ксеноном после изменения уровня мощности
- •19.5. Расчёт изменений потерь реактивности за счёт переотравлений реактора.
- •Тема 20 отравления реактора самарием-149
- •20.1. Схема образования-убыли 149Sm и дифференциальные уравнения отравления реактора самарием
- •20.1. Схема образования и убыли самария-149 и сопутствующих продуктов деления и их распада
- •20.2. Потери реактивности при стационарном отравлении реактора самарием
- •20.3. Закономерность роста потерь реактивности от отравления самарием до выхода реактора на стационарный уровень отравления.
- •20.4. Нестационарное переотравление реактора самарием после останова («прометиевый провал»)
- •20.5. Переотравление самарием после пуска длительно стоявшего реактора
- •20.6. Нестационарное переотравление реактора самарием после перевода реактора на более высокий или более низкий уровень мощности
- •Раздел 5.
- •Действие вводимого в активную зону стержня-поглотителя
- •Характеристика положения стержня-поглотителя в активной зоне
- •Понятия об интегральной и дифференциальной эффективности
- •Эффективный радиус стержня-поглотителя
- •Физический вес центрального стержня-поглотителя полной длины
- •21.6. Физический вес нецентрального подвижного поглотителя
- •Характеристики поглотителей – кривые интегральной и дифференциальной эффективности
- •Изменение реактивности реактора при перемещении стержня
- •Особенности характеристик укороченных поглотителей
- •Интерференция подвижных стержней-поглотителей
- •21.11. Простейшие методы градуировки подвижных поглотителей
- •Тема 22 борное регулирование ввэр
- •22.1. Сущность борного регулирования
- •22.2. Характер изменения концентрации борной кислоты в первом контуре
- •Эффективность борной кислоты
- •Факторы, определяющие величину дифференциальной эффективности борной кислоты
- •Тема 23 расчётное обеспечение ядерной безопасности ввэр при его эксплуатации
- •Расчёт пусковой критической концентрации борной кислоты
- •Расчёт предельно допустимого расхода подпитки первого контура чистым дистиллатом при пуске ввэр
- •Время снижения концентрации борной кислоты до заданной величины
- •Расчёт безопасного значения стояночной концентрации борной кислоты
- •23.5. Расчёт времени подпитки первого контура концентрированным раствором борной кислоты до достижения безопасной стояночной концентрации
- •Литература
6.2. Скорость утечки тепловых нейтронов из единичного объёма активной зоны
Уравнение баланса тепловых нейтронов можно записывать для всех тепловых нейтронов в реакторе:
dN/dt = (скорость генерации ТН в а.з.) - (скорость поглощения ТН в а.з.) - (скорость утечки ТН из а.з.),
а можно и для единичного объёма активной зоны (например, для 1 см3):
dn/dt = (ск. генерации ТН в 1см3а.з.) - (ск. поглощения ТН в 1см3а.з) - (ск. утечки ТН из 1 см3 а.з.) (6.2.1)
Второе уравнение получается из первого путём почленного деления обеих частей его на величину объёма активной зоны Vаз. В этом случае в левой части (6.2.1) получается средняя по объёму активной зоны скорость изменения плотности тепловых нейтронов, равно как и в правой части этого логического равенства получаются средние величины скоростей генерации, поглощения и утечки тепловых нейтронов в 1 см3 среды активной зоны.
Выражения для первых двух слагаемых правой части (6.2.1) нам уже известны, остается получить выражение для третьего - скорости утечки тепловых нейтронов из единичного объёма среды активной зоны.
Для этого около произвольной точки активной зоны с координатами r(x,y,z) мысленно выделим элементарный объём dV = dx dy dz и сосчитаем вначале скорость утечки тепловых нейтронов из этого объёма.
Предположим, что плотность тока тепловых нейтронов на левой грани этого элементарного объёма площадью dy dz равна Ix, а на правой грани (той же площади dy dz) она равна Ix+dIx. Это значит, что через левую грань в элементарный объём входит ежесекундно Ixdydz тепловых нейтронов, а через правую грань проходит ежесекундно (Ix+dIx)dydz тепловых нейтронов.
Z
dx
Ix Ix+dIx dz
0
X
Y
Рис.6.4. Иллюстрация к выводу величины скорости утечки тепловых нейтронов из элементарного объёма активной зоны.
Разница чисел тепловых нейтронов, ежесекундно пересекающих левую и правую грани элементарного объёма, и есть составляющая скорости утечки тепловых нейтронов из этого объема вдоль оси Оx:
dQx = (Ix+dIx)dydz - Ixdydz = dIxdydz = (dIx/dx)dxdydz = (dIx/dx)dV.
Аналогично рассуждая относительно составляющих скоростей утечки из элементарного объёма вдоль осей Оy и Oz, можно получить:
dQy = (dIy/dy)dV и dQz = (dIz/dz)dV,
а, следовательно, полная скорость утечки тепловых нейтронов из элементарного объёма вдоль всех трёх координатных осей составит:
dQ = dQx + dQy + dQz = [(dIx/dx) + (dIy/dy) + (dIz/dz)]dV = I(r)dV (6.2.2)
Для получения скорости утечки из единичного объёма надо скорость утечки из элементарного объёма dV разделить на величину этого объёма:
qу = dQ/dV = I(r) (6.2.3)
Но выражение для вектора плотности тока тепловых нейтронов в соответствии с законом Фика для них:
I(r) = - D Ф(r).
Подстановка этого выражения в (6.2.3) дает:
qу = [-DФ(r)] = -D [ Ф(r)] = - D 2Ф(r), (6.2.4)
поскольку оператор Гамильтона от оператора Гамильтона функции, как известно, есть оператор второго порядка этой же функции - оператор Лапласа. В теории поля оператор Лапласа иначе называют дивергенцией.
Таким образом, в общем виде локальная скорость утечки тепловых нейтронов из единичного объёма с учётом величины коэффициента диффузии (D = 1/3tr) выразится так:
(6.2.5)